STATE OF NEW HAMPSHIRE PUBLIC UTILITIES COMMISSION

DOCKET NO. DE 21-004

LIBERTY UTILITIES (GRANITE STATE ELECTRIC) CORP d/b/a LIBERTY 2021 LEAST COST INTERGRATED RESOURCE PLAN

DIRECT JOINT TESTIMONY OF

Jay E. Dudley Utilities Analyst IV New Hampshire Department of Energy

> Ronald D. Willoughby River Consulting Group, Inc.

> Joseph J. DeVirgilio River Consulting Group, Inc.

> > September 16, 2022

Table of Contents

I.	Introduction and Qualifications	3
II.	Summary of Testimony	13
III.	Review of 2020 Least Cost Integrated Resource Plan	14
IV	Bellows Falls Reliability Report	41
V.	Conclusions and Recommendations	45
	List of Attachments:	
	Attachment RDW-1	
	Attachment RDW-2	
	Attachment JJD-1	
	Attachment JED/RDW/JJD-1 Data Request DOE TS 1-3	
	Attachment JED/RDW/JJD-2 Data Request Staff 1-37	
	Attachment JED/RDW/JJD-3 Data Request DOE 8-4	
	Attachment JED/RDW/JJD-4 Data Request Staff 1-12	
	Attachment JED/RDW/JJD-5 Data Request Staff 1-1	
	Attachment JED/RDW/JJD-6 Data Request Staff 1-25	
	Attachment JED/RDW/JJD-7 Data Request Staff 1-21	
	Attachment JED/RDW/JJD-8 Data Request DOE TS 2-1	
	Attachment JED/RDW/JJD-9 Data Request DOE 5-3	
	Attachment JED/RDW/JJD-10 Data Request DOE 7-11	

1 I. INTRODUCTION AND QUALIFICATIONS 2 **Q**. Mr. Dudley, please state your full name and business address. 3 My name is Jay E. Dudley. My business address is 21 South Fruit Street, Suite 10, A. 4 Concord, NH 03301. 5 **Q**. Please state your employer and your position. I am employed by the New Hampshire Department of Energy ("DOE" or the 6 A. 7 "Department") as a Utility Analyst for the Regulatory Support Division. 8 **Q**. Please describe your professional background. 9 A. I started at the New Hampshire Public Utilities Commission ("Commission" or "PUC") 10 in June of 2015 as a Utility Analyst in the Electric Division. Effective July 1, 2021, the 11 Electric Division was transferred to, and became part of, the newly created New 12 Hampshire Department of Energy and I am presently employed by that agency. Before 13 joining the Commission, I was employed at the Vermont Public Service Board (now 14 known as the Vermont Public Utilities Commission, "VT-PUC") for seven years as a 15 Utility Analyst and Hearing Officer. In that position I was primarily responsible for the 16 analysis of financing and accounting order requests filed by all Vermont utilities, 17 including review of auditor's reports, financial projections, and securities analysis. As 18 Hearing Officer, I managed and adjudicated cases involving a broad range of utility-19 related issues including rate investigations, construction projects, energy efficiency, 20 consumer complaints, utility finance, condemnations, and telecommunications. Prior to 21 working for the VT-PUC, I worked in the commercial banking sector in Vermont for 22 twenty years where I held various management and administrative positions. My most

recent role was as Vice President and Chief Credit Officer for Lyndon Bank in Lyndonville, Vermont, where I was responsible for directing and administering the analysis and credit risk management of the bank's loan portfolio, including internal loan review, regulatory compliance, audit, and coordinating periodic bank examinations by state and federal regulators.

6 Q. Please describe your educational background?

7 I received my Bachelor of Arts degree in Political Science from St. Michael's College. A. 8 Throughout my career in banking, I took advantage of numerous Continuing Professional 9 Education (CPE) opportunities involving college level coursework in the areas of 10 accounting, financial analysis, real estate and banking law, economics, and regulatory 11 compliance. Also, during my tenure with the VT-PUC I took advantage of various CPE 12 opportunities including the Regulatory Studies Program at Michigan State University 13 (sponsored by the National Association of Regulatory Utility Commissioners "NARUC"), 14 Utility Finance & Accounting for Financial Professionals at the Financial Accounting 15 Institute, Standard & Poor's seminars on credit ratings for public utilities, and Scott 16 Hempling seminars on Electric Utility Law and Public Utility Regulation.

17 Q. Have you previously testified before the Commission?

A. Yes. I previously submitted Staff testimony to the Commission in Docket No. DE 14238, Public Service Company of New Hampshire Generation Assets; Docket No. DE 15137, Energy Efficiency Resource Standard; Docket No. DE 16-383, Liberty Utilities
Request for Change in Rates; Docket No. DE 17-136, 2018-2020 NH Energy Efficiency
Plan; Docket No. DE 19-064, Liberty Utilities Request for Change in Rates; Docket No.
DE 19-057 Public Service Company of New Hampshire for Change in Rates; Docket No.

1		DE 20-092, 2021-2023 Triennial Energy Efficiency Plan; Docket No. DE 21-030 Unitil
2		Energy Systems, Inc. Request for Change in Rates; and Docket No. DE 22-026 Unitil
3		Energy Systems, Inc. Petition for Approval of Step Adjustment Filing.
4	Q.	Mr. Willoughby, please state your full name and business address.
5	A.	My name is Ronald D. Willoughby. My business address is 1007 Wolfs Bane Drive,
6		Apex, NC 27539.
7	Q.	Please state your employer and your position.
8	A.	I am employed by Willoughby Consultant as its Owner. I am performing this engagement
9		as a subcontractor to River Consulting Group, Inc.
10	Q.	Are you registered as a Professional Engineer?
11	А.	Yes, I hold a license as a Professional Engineer in Pennsylvania.
12	Q.	Do you hold any patents in power engineering?
13	А.	Yes, I hold a U.S. Software Patent for improving the reliability of electrical distribution
14		networks.
15	Q.	Please summarize your educational and professional background.
16	А.	I received a Bachelor of Science in Electrical Engineering from the University of
17		Missouri-Rolla and a Master of Science in Electrical Engineering (Power Engineering)
18		from Carnegie-Mellon University.
19		I am a senior life member of the IEEE (Institute of Electrical and Electronics Engineers);
20		a senior member of the IEEE Power Engineering Society; a senior member of the IEEE
21		Industrial Applications Society; and a member of the honorary societies Phi Kappa Phi,
22		Eta Kappa Nu, Tau Beta Phi and Kappa Kappa Psi.

- 1 I have published over 60 articles relating to electric power systems analysis and 2 operation.
- 3 **O**.

Q. Please summarize your consulting and employment experience.

- A. I have been actively engaged in the utility industry for over 45 years, during which I have
 had extensive experience in the following areas:
- Transmission and Distribution Planning I have led engineering, procurement and construction (EPC), and turnkey solutions for electric distribution automation, medium voltage modular substations (distribution centers), and wind farm distribution systems (from base of turbine towers through interconnection to utility grid). I have also led distribution grid modernization planning efforts, focused on systematic and incremental addition of smart grid devices, with technology, performance, and cost central to the planning process.
- Distribution Substation Design and Specification Review I managed an engineering
 group that designed modular distribution substations and specified all corresponding
 equipment.
- Advanced Protection, Automation & Control I co-chaired (with the Director of R&D at We-Energies) Distribution Vision 2010 LLC (DV2010), a consortium of Investor-Owned Utility (IOU) companies to advance distribution automation and equipment design.
- Distribution Grid Modernization Planning I was principal engineer on distribution
 automation and volt-var optimization projects, with an emphasis on conservation
 voltage reduction (CVR).

- Renewable Energy Integration and the Impact on the Utility Grid I was involved in
 electric power system impact studies related to distributed energy resource
 integration, including energy storage specification and integration, and related impact
 studies.
- 5 Conservation Voltage Reduction – I was the Project Manager and Technical Lead for a major midwestern electric utility's feasibility study to quantify energy and demand 6 7 savings using distribution Voltage Optimization techniques. **Objectives:** 1) 8 Minimize cost by initiating feeder upgrades to achieve minimum performance 9 thresholds. 2) Maximize energy savings by optimizing performance while staying 10 within Total Resource Cost (TRC) constraints. I also was the Co-founder of a CVR 11 Industry Consortium to guide CVR research, work with industry groups, develop 12 policy recommendations, promote implementation strategies, and document the 13 results.

14 I have participated in various international programs including:

- Invited by CEOs of Wind-2-Power-Systems (W2PS) and Hudson Energy to represent
 the United States for a conference in Madrid to cover PV integration, grid integration,
 energy storage, and DC infrastructure issues.
- Invited by CARILEC to chair two sessions on Transforming the Electricity Grid at
 the Renewable Energy Forum, St Thomas, U.S. Virgin Islands.
- Invited by Prime Minister of Curacao to represent United States in 1st Annual
 Durable Energy Conference to address renewables integration issues for the
 transmission and distribution system.

1		• Conducted comprehensive seminar on electric power systems for the Ministry of
2		Water and Power in Peking, China.
3		 Led projects sponsored by the Pacific Power Association (PPA) for power system
4		energy analysis and loss reduction on 20 islands in the South Pacific, 10 with U.S
5		style power systems, and 10 with European-style power systems.
6		• Performed international power systems studies on power flow, transient stability,
7		shunt compensation, load shedding, motor starting, loss formula development, short
8		circuit, and protective device coordination.
9		 Taught Westinghouse's Advanced School on Power System Stability.
10		 Managed commissioning and public relations for comprehensive distribution line
11		installation in the city of Smolensk, Russia.
12	Q.	Have you included a more detailed description of your qualifications?
13	А.	Yes. More detailed descriptions of my experience and qualifications are included as
14		Attachments RDW-1 and RDW-2.
15	Q.	Have you previously testified before the Commission?
16	A.	No.
17	Q.	Mr. DeVirgilio, please state your full name and business address.
18	A.	My name is Joseph J. DeVirgilio, Jr. My business address is 201 Vicenza Way, North
19		Venice, FL 34275.
20	Q.	Please state your employer and your position.
21	A.	I am employed by Suncoast Management Consultants, LLC as its Owner. I am
22		performing this engagement as a subcontractor to River Consulting Group, Inc.

- 1 0. Are you registered as a Professional Engineer? 2 A. Yes, I hold an inactive license as a Professional Engineer in New York. 3 **Q**. Please summarize your educational and professional background. 4 A. I received a Bachelor of Engineering from Stevens Institute of Technology and a Master 5 of Engineering in Electrical Power Engineering from Rensselaer Polytechnic Institute 6 (RPI). 7 **Q**. Please summarize your consulting experience. 8 A. I have 12 years of experience as a utility consultant. I have been part of consulting teams 9 performing capital spending reviews, operations improvement initiatives, management 10 audits, and reviews of emergency plans. I have participated in broad management audits 11 for regulatory commissions and led the study teams in the subject areas of HR, IT, Call 12 Center Operations, Collections, Billing, Meter Reading, Field Operations, and others for 13 clients including Southern Connecticut Gas, Management Audit, 2016; Connecticut 14 Natural Gas, Management Audit, 2016; and Yankee Gas, Connecticut, Management 15 Audit, 2014-2015. 16 Q. Please summarize your employment experience. I have been actively engaged in the utility industry for over 49 years. I am a retired 17 A. 18 senior utility executive (Central Hudson Gas & Electric Corporation). My experience 19 spans a wide variety of consulting and executive responsibilities in both the regulated 20 electric T&D business and natural gas and the unregulated energy business, including 21 natural gas and electric T&D operations, construction and maintenance, work 22 management planning, and reporting, process re-engineering, H/R, and I/T. I have been
- 23 responsible for distribution, substation and meter engineering, I/T, meter testing, T&D

1		operations and construction, O&M and capital budgeting, process re-engineering, work
2		management, emergency response, security, strategic planning, purchasing, stores and
3		transportation and human resources and labor relations, staffing and human capital
4		effectiveness assessments, executive and management compensation programs. I have
5		15+ years of experience as a T&D engineer, supervisor, and senior manager for the
6		company-wide T & D operations. For 20+ years I also held the CIO role and lead the
7		Utility I/T Steering Committee including the review and approval of all outsourcing
8		contracts, hardware, software, outage management and SCADA software and the
9		associated capital and expense annual budgets. Additionally, I have been a member of
10		the Corporate Executive Capital Allocation and Review Committee responsible for the
11		review of all proposed capital projects and the post completion review of actuals to
12		estimates. I have 25 plus years of experience as a H/R executive with responsibility for
13		all aspects of the function, including employment, employee and labor relations,
14		employee safety, and employee benefits, and executive and employee compensation.
15		Additionally, as the chief staffing officer I was responsible for the annual corporate
16		staffing budgets, identification and implementation of technology driven staffing
17		reduction initiatives, productivity improvement initiatives, enterprise-wide staffing and
18		use of non-traditional employees, employee/contractor mix analysis, staffing and turn-
19		over analysis and resulting changes to employment and employee development
20		processes. I have training in mentoring and mediation.
21	Q.	Please describe your T&D utility related experiences.
22	А.	I have 15 plus years of experience as a T&D engineer, supervisor, and senior manager for
23		the company-wide T&D operations and reliability, construction, maintenance, and

1		support, process re-engineering, Q/P implementations and benchmarking. My process re-
2		engineering experience has included all parts of the T&D operations and customer
3		services organizations, including meter reading, capital construction, T&D maintenance
4		and reliability planning, use of contractors, tree trimming process and call center
5		improvements.
6	Q.	Please summarize your relevant utility experience.
7	A.	I have had extensive experience in the following areas:
8		 Electric T&D Operations, Engineering, and Management – I have 13 plus years of
9		experience performing hands-on design and installation management of electric T&D
10		systems and O&M management, including reliability improvement plans and
11		assessments of tree trimming impact on reliability.
12		 Capital Projects & Programs Evaluations – I have participated in an in-depth
13		evaluation of a major midwestern, urban electric utility's CapEx processes and
14		planning efforts. The utility, at the time, had planned a multi-year, multi-billion
15		dollar capital program to build new transmission and upgrade its distribution system
16		to improve overall reliability and position it to accept distributed energy resources.
17		 Capital & O&M Budgeting – I have had more than 25 years of operations support
18		services responsibility, including supply chain, stores, transportation, security, and
19		building services and maintenance. Additionally, I have had more than five years of
20		P&L business responsibility and 30+ years of capital and O&M budget development
21		and execution responsibility for the various management and executive areas of a
22		utility business. I have extensive labor management experience and the impact of
23		labor/contractor decision management on budget outcomes.

1	•	Performance & Result Management – I have 10+ years of experience as the lead
2		executive responsible for utility performance improvement and the work management
3		system.
4	•	Management Audits –I have 20+ years of experience in participation, planning,
5		preparation, and execution of the utility side of management audits in both general
6		and subject-specific audits. I was the executive responsible for the utility's audit
7		response for over 15 years.
8	•	Human Resources – I have 25 plus years of experience as a H/R executive
9		responsible for staffing, labor and employee relations, executive and salaried
10		employee compensation and benefits, and safety. I was the plan administrator for the
11		pension and 401k plans. I have selected and implemented third-party providers for
12		both plans. I have implemented a new executive incentive plan and had administered
13		it since its inception. I have put in place and implemented EEO/AAP plans. I have
14		identified and implemented a "high potential employee" (HPE) selection and
15		development program including executive mentoring.
16	•	Corporate Mission, Objectives, Goals, and Planning – I have been a member of a
17		corporate Strategic Planning Committee and have several years of experience
18		developing a strategic plan and ensuring goal alignment throughout the utility and
19		other business unit organizations.
20	•	I/T – I have had over 20+ years of experience as a utility CIO and the Chair of the
21		utility I/T Steering Committee responsible to review and approve the 5-year I/T
22		strategic plan, all I/T projects, the annual capital and expense budgets, and
23		expenditure reviews.

1	Q.	Have you included a more detailed description of your qualifications?
2	А.	Yes. More detailed descriptions of my experience and qualifications are included as
3		Attachment JJD-1.
4	Q.	Have you previously testified before this Commission or any other Commission?
5	A.	I have testified before the New York State Public Service Commission as an executive
6		for Central Hudson Gas & Electric Corporation in a rate case proceeding involving gas
7		employee staffing and productivity. I have not testified before the New Hampshire
8		Public Utilities Commission.
9	II.	SUMMARY OF TESTIMONY
10	Q.	Please describe the purpose of your testimony today.
11	A.	The purpose of our testimony is to provide the results of the Department's review and
12		evaluation of Liberty Utilities (Granite State Electric) Corp d/b/a Liberty ("Liberty" or
13		"the Company") 2021 Least Cost Integrated Resource Plan ("LCIRP or the Plan") and
14		related reports. This review and evaluation will assess whether Liberty's LCIRP is
15		consistent with the provisions of New Hampshire RSA 378:37, :38, and :39.
16	Q.	What is your general conclusion involving Liberty's LCIRP?
17	A.	We have concluded that the Company's 2021 LCIRP generally meets the requirements
18		set out in RSA 378:37 and RSA 378:38, but that Liberty's Plan did not specifically
19		address several elements listed in RSA 378:39 that the Commission shall consider when
20		reviewing the Plan. We also found that significant new projected load capacity from
21		Salem, approximately 177 MVA, ¹ was not considered or analyzed in the Plan, and that
22		consideration of planned system investments was lacking in sufficient detail.

1		Consequently, as discussed below, we recommend that Liberty provide a supplemental
2		filing addressing the criteria in RSA 378:39, the impacts of the new load projected for
3		Salem, and additional details about its planned investments. The Department also makes
4		several additional recommendations which are detailed at the end of our testimony.
5	III.	REVIEW AND ANALYSIS OF LIBERTY 2020 LCIRP
6	Q.	What does RSA 378:37 require Liberty to include in its LCIRP?
7	A.	RSA 378:37 declares that New Hampshire Energy Policy is to meet "the energy needs of
8		the citizens and businesses of the state at the lowest reasonable cost while providing for
9		the reliability and diversity of energy sources; to maximize the use of cost effective
10		energy efficiency and other demand side resources; and to protect the safety and health of
11		the citizens, the physical environment of the state, and the future supplies of resources,
12		with consideration of the financial stability of the state's utilities."
13	Q.	What does RSA 378:38 require Liberty to include in its LCIRP?
14	A.	New Hampshire utilities must demonstrate compliance with these energy policies through
15		their planning process and the content of their least cost integrated resource plans.
16		Specifically, RSA 378:38 requires LCIRPs to include, as applicable, the following:
17 18		I. A forecast of future demand for the utility's service area.
19		II. An assessment of demand-side energy management programs, including
20		conservation, efficiency, and load management programs.
21		III. An assessment of supply options including owned capacity, market
22		procurements, renewable energy, and distributed energy resources.

¹ See Salem Area Study 2020 at Bates 40, filed with the Commission at: <u>https://www.puc.nh.gov/Regulatory/Docketbk/2019/19-064/MOTIONS-OBJECTIONS/19-064_2020-09-02_GSEC_SALEM_STUDY.PDF</u>

1		IV. An assessment of distribution and transmission requirements, including an
2		assessment of the benefits and costs of "smart grid" technologies, and the
3		institution or extension of electric utility programs designed to ensure a more
4		reliable and resilient grid to prevent or minimize power outages, including but
5		not limited to, infrastructure automation and technologies.
6		V. An assessment of plan integration and impact on state compliance with the
7		Clean Air Act of 1990, as amended, and other environmental laws that may
8		impact a utility's assets or customers.
9		VI. An assessment of the plan's long- and short-term environmental, economic,
10		and energy price and supply impact on the state.
11		VII. An assessment of plan integration and consistency with the state energy
12		strategy under RSA 12-P.
13	Q.	Are all of these requirements applicable to Liberty, which is a distribution-only
14		company?
15	A.	The statute requires utilities to address items such as the environmental impact of various
16		resource options and compliance with the 1990 Clean Air act, but we believe that the
17		analysis of these factors for a distribution-only utility is far less significant than for an
18		electric utility that owns generation facilities. We read the statute as recognizing the
19		differing applicability of certain least cost planning elements to distribution-only utilities
20		by stating "Each such plan shall include, but not be limited to, the [above enumerated
21		factors], as applicable." RSA 378:38 (emphasis added).
22	Q.	Did Liberty consider the applicability of RSA 378:39 as part of its 2020 LCIRP?

1	А.	The Company's LCIRP only touches briefly upon the RSA 378.39 elements of
2		environmental, economic, and health related impacts as those areas relate to Liberty's
3		energy efficiency programs, distribution planning, participation in renewable energy
4		procurement, grid modernization, and non-wires solutions, but does not provide sufficient
5		detail to assess whether or how significantly these elements factored into Liberty's
6		planning process and consideration of options. Thus, we recommend that the Company
7		provide a supplemental filing that complies RSA 378:39, such that the Commission can
8		assess whether the Plan sufficiently encompasses potential environmental, economic, and
9		health-related impacts, that allows the Commission to make an adequate assessment of
10		those criteria.
11	Q.	Does the Company's 2020 LCIRP comply with the requirements set out in the
12		Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's Order
12 13		Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's Order No. 26,408 dated September 23, 2020?
12 13 14	A.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's Order No. 26,408 dated September 23, 2020? Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022
12 13 14 15	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's OrderNo. 26,408 dated September 23, 2020?Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows Falls
12 13 14 15 16	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's OrderNo. 26,408 dated September 23, 2020?Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows FallsArea, addresses the directives provided in the Settlement Agreement and the Order
12 13 14 15 16 17	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's OrderNo. 26,408 dated September 23, 2020?Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows FallsArea, addresses the directives provided in the Settlement Agreement and the Orderrelated to non-wire solutions ("NWS"), access to Liberty's distribution operating
12 13 14 15 16 17 18	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's OrderNo. 26,408 dated September 23, 2020?Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows FallsArea, addresses the directives provided in the Settlement Agreement and the Orderrelated to non-wire solutions ("NWS"), access to Liberty's distribution operatingprocedures manuals, capital project candidates for NWS, a planning process associated
12 13 14 15 16 17 18 19	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's Order No. 26,408 dated September 23, 2020? Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022 Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows Falls Area, addresses the directives provided in the Settlement Agreement and the Order related to non-wire solutions ("NWS"), access to Liberty's distribution operating procedures manuals, capital project candidates for NWS, a planning process associated with assessment of NWS, and risk analysis and evaluation of NWS. ² However, as
12 13 14 15 16 17 18 19 20	А.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's OrderNo. 26,408 dated September 23, 2020?Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows FallsArea, addresses the directives provided in the Settlement Agreement and the Orderrelated to non-wire solutions ("NWS"), access to Liberty's distribution operatingprocedures manuals, capital project candidates for NWS, a planning process associatedwith assessment of NWS, and risk analysis and evaluation of NWS. ² However, asreferenced below, the Department continues to have concerns involving the robustness of
12 13 14 15 16 17 18 19 20 21	A.	Settlement Agreement in Docket No. DE 19-120 and approved in the PUC's Order No. 26,408 dated September 23, 2020? Yes. As discussed further below, the LCRIP, taken together with Liberty's June 1, 2022 Report on Wires and Non-Wire Solutions to Address Reliability in the Bellows Falls Area, addresses the directives provided in the Settlement Agreement and the Order related to non-wire solutions ("NWS"), access to Liberty's distribution operating procedures manuals, capital project candidates for NWS, a planning process associated with assessment of NWS, and risk analysis and evaluation of NWS. ² However, as referenced below, the Department continues to have concerns involving the robustness of the Company's deployment of NWS.

1 RSA 378:38, I – Demand Forecast

Q. Does Liberty's LCIRP include a forecast of future demand for the utility's service area?

4 A. Yes. According to the Company's Plan, Liberty's system planning is a 20-year 5 timeframe forecast using historical peak load to establish a correlation for future forecasting. An econometric model evaluates historical peak demand as a function of 6 7 peak day weather conditions and the economy. The econometric model utilizes two 8 different weather variables, normal weather conditions and extreme weather conditions, 9 in forecasting summer peak demand and includes consideration of cooling degree days. 10 The first scenario of the forecast assumes normal weather conditions, which are based off the most recent 20-year period.³ Liberty produces a 50/50 and a 90/10 peak demand 11 12 forecast. The 50/50 forecast is based off normal 20-year weather and has a 50 percent 13 chance of being exceeded. The second scenario of the forecast which is the 90/1014 forecast is the extreme weather scenario that has a 10 percent chance of being exceeded. 15 Other variables considered by the econometric model include historical and forecasted 16 economic conditions at the county level, historical peak demand data for each service 17 area, and a forecast of weather conditions based on historical data obtained from a 18 weather station located in Concord, NH.⁴ 19 Once the forecast is developed, Liberty makes what it describes as "certain out of model 20 adjustments" to account for known future loads or generation. Specifically, those 21 adjustments are made for new load greater than 300 kW interconnecting to Liberty's 22 distribution system in the near future, or distributed generation greater than 1,000 kW

² LCIRP at Bates 7-8.

³ *Id.* Appendix B at Bates 166-171.

1		that is expected to interconnect. Growth rates are applied to each of the substations and
2		feeders within each of Liberty's service areas, then the forecasts are adjusted for specific
3		substations and feeders to account for spot loads and any planned load transfers. Liberty
4		uses the extreme weather scenario for forecasted peak loads for each substation and
5		feeder to perform planning studies and to determine if thermal and contingency capacities
6		are adequate. ⁵
7		Liberty also divides its seasonal peak forecasts between its Eastern and Western
8		jurisdictions (each designated as a planning study area or PSA) and incorporates sales
9		information from each town along with the 2021 summer and winter coincident peak
10		percentage contributions from each region. ⁶ Separate annual forecasts are then produced
11		for each of the nineteen towns within Liberty's service territory using a regression model
12		to predict kWh load for each forecast year.
13		The peak demand forecast for each area also includes historic energy efficiency savings
14		resulting from installed energy efficiency measures under the NH Saves programs, and
15		the impact of installed distributed generation (largely behind-the-meter solar PV growth).
16		Liberty has also developed a demand forecast that includes the growth in electric vehicle
17		charging. ⁷
18	Q.	What were the results of Liberty's forecast modeling?
19	A.	The Company's modeling projects an increase in summer peak demand from a weather

adjusted 188.5 MW in 2021 to 202.6 MW in 2037 resulting in an average annual increase

⁴ *Id.* at Bates 13-16.

⁵ Id.

⁶ *Id.* at Bates 17, footnote 8. The Eastern PSA includes the towns of Derry, Pelham, Salem, and Windham. The Western PSA includes the towns of Acworth, Alstead, Bath, Canaan, Charlestown, Cornish, Enfield, Grafton, Hanover, Langdon, Lebanon, Lyme, Marlow, Monroe, Orange, Plainfield, Surry, and Walpole. ⁷ *Id.* at Bates 15. Also see Appendix B at Bates 141-165.

1		of 0.4 percent. Under the extreme weather scenario, Liberty forecasts an increase in
2		summer peak demand from 188.5 MW in 2021 to 217.34 MW in 2037 resulting in an
3		average annual increase of 0.87 percent. ⁸ However, in response to data request DOE TS
4		1-3, Liberty revised and updated these results because the weather adjusted peak demand
5		of 188.5 MW represented in the Plan was applicable to 2020 and not 2021, and the
6		reported percentage increased were incorrect. ⁹ The revised summer peak demand for
7		2021 under normal weather conditions is 192.2 MW increasing to 202.6 MW in 2037
8		resulting in an annual increase of 0.3 percent. The revised extreme weather forecast of
9		summer peak demand for 2021 is 207 MW increasing to 217.3 MW in 2037 resulting in
10		an annual increase of 0.3 percent.
11	Q.	Does the Department have any concerns about Liberty's demand forecast
12		modeling?
13	А.	Yes. First, it is important to keep in mind that the planning process for designing a
14		distribution system begins with an accurate load forecast based on reasonable
15		assumptions and good data. The Department finds that Liberty's use of the 20-year
16		historical basis for both normal weather and extreme weather demand forecasting is
17		overly conservative and covers too long of a period for any projection of probability to be
18		useful. By using a 20-year historical period, Liberty is planning for a peak event that has
19		a five percent likelihood of occurring, leading Liberty to build its system to anticipate
20		higher peaks potentially resulting in more frequent replacement and addition of
21		transformers regardless of whether the future peaks will materialize. Both Unitil and

 ⁸ Id. at Bates 17.
 ⁹ Attachment JED/RDW/JJD-1, Data Request DOE TS 1-3.

1	translates to a ten percent likelihood of a peak event occurring. ¹⁰ In response to data
2	request Staff 1-37, the Company re-worked its forecasted peak calculations in Appendix
3	B, Tables 2 and 3 for normal weather and extreme weather, basing the calculations on the
4	10-year historical period instead of the 20-year period. ¹¹ The results were that peak
5	megawatt growth percentages were much lower than those depicted in Appendix B for
6	the 20-year historical period. Also in the response, Liberty expressed a willingness to
7	switch to the 10-year historical period. As a result, the Department recommends that the
8	Commission direct Liberty to shift its load forecasting historical basis to the 10-year
9	historical period for all future LCIRP's.
10	Secondly, Liberty's demand forecast does not contemplate or include approximately 177
11	MVA of projected "total" capacity and 142 MVA of "firm" capacity at Salem's
12	Rockingham Substation driven largely by the Tuscan Village development. ¹² The "total"
13	capacity resides in two transformers sized such that one can back up the other if there is a
14	transformer failure or if maintenance is required. The 142 MVA "firm" capacity is
15	designed to support ten distribution feeders: six will be connected to satisfy near-term
16	capacity needs, and four will be left for future growth needs. ¹³ Given the size and
17	complexity of this design, combined with the fact that Salem is one of four towns
18	identified by Liberty in the Plan as part of its Eastern PSA, and because the expected 177
19	MVA of new capacity is so close to the Company's overall service area peak in 2020 of
20	188.5 MW, it is surprising that this development was overlooked by Liberty in its Plan.

 ¹⁰ See Docket No. DE 19-120, Liberty Utilities 2019 Least Cost Integrated Resource Plan, Exhibit 2 at Bates 10, Table 1, Load Forecasting Methodology.
 ¹¹ Attachment JED/RDW/JJD-2, Data Request Staff 1-37.
 ¹²See Salem Area Study 2020 at Bates 40, filed with the Commission at: https://www.puc.nh.gov/Regulatory/Docketbk/2019/19-064/MOTIONS-OBJECTIONS/19-064_2020-09-

02_GSEC_SALEM_STUDY.PDF ¹³ *Id.* at Bates 40.

1		This apparent omission is also true for the Company's Grid Needs Assessment provided
2		in Section 4.15 of the LCIRP which is discussed further below. Consequently, the
3		Department recommends that the Commission direct Liberty to file a supplement to the
4		LCIRP that considers and incorporates the impacts of the new load both existing and
5		forecasted for Salem on Liberty's demand forecast.
6	Q.	Does the Department have any concerns about how the Company forecasts load on
7		its circuits?
8	A.	Liberty applies area growth rates to each of the substations and feeders within the PSA's.
9		Liberty's distribution planners then adjust the forecasts for specific substations and
10		feeders to account for known spot load additions or subtractions, as well as for any
11		planned load transfers due to system reconfigurations. The planners use the forecasted
12		peak loads for each feeder/substation under the extreme weather scenario to perform
13		planning studies and to determine if the thermal and contingency capacity of its facilities
14		is adequate. ¹⁴ Consequently, Liberty's process appears to be reasonable due to the
15		inclusion of known additions or subtractions.
16	Q.	What is the Department's assessment of Liberty's Plan in the areas of equipment
17		ratings, bulk substations, interconnected feeders, non-bulk substations, and
18		distribution circuit planning.
19	А.	As mentioned above, Liberty divides its service territory into two PSA's: East and
20		West. ¹⁵ The distribution planning process follows a published Distribution Planning
21		Process Map and Timeline ¹⁶ that considers peak load forecast (updated annually) and
22		asset conditions to identify system deficiencies (violations) based on the Electric

¹⁴ LCIRP at Bates 16.¹⁵ *Id.* Appendix D, Bates 196.

1	Distribution Planning Criteria approved in Docket No. DE 19-064.17 Two types of
2	planning studies are conducted: 1) PSA area studies, and 2) interconnection studies. ¹⁸
3	PSA's consist of loads, substations, and distribution feeders. Interconnection studies
4	determine facility and system upgrades to satisfy capacity and planning criteria
5	constraints. ¹⁹ Each PSA operates independently, i.e., there is no interconnection between
6	them. ²⁰
7	Both traditional and non-wire solutions (NWSs) are investigated for each PSA to develop
8	and prioritize feasible solution alternatives based on cost, violation resolution, strategic
9	goals, budget constraints, and schedule. Capital projects are then proposed from these
10	prioritized solutions and submitted for approval. Prioritization of system deficiencies is
11	based on the following measures: Customers affected, loadings, safety & environment,
12	and overall impact, with a "low likelihood (1 in 100 years)" to "high likelihood (each
13	year)". ²¹
14	System performance is modeled using industry-accepted engineering analysis software. ²²
15	To maintain data integrity (key to any modeling effort), Liberty extracts data from their
16	Graphical Information System (GIS) and Customer Information System (customer
17	demand histories) to update the load flow models. ²³
18	Industry references in support of equipment rating guidelines/applications are included in
19	Appendix D of the LCIRP (e.g., IEEE, ANSI, NESC, Doble). A summary of equipment
20	rating criteria (Normal-continuous, LTE-24 hours, STE-as needed) and details in support

¹⁶ *Id.* Appendix C, Bates 176.
¹⁷ *Id.* Appendix D, Bates 182-183
¹⁸ *Id.* Appendix D, Bates 198
¹⁹ *Id.* Appendix D, Bates 198
²⁰ Based on information obtained from Liberty witnesses at the April 15, 2022 Technical Session.
²¹ LCIRP, Appendix C, Bates 178.
²² *Id.* at Bates 41, Figure 4.4, and Appendix D at Bates 198.

1 of each rating are provided and correlated to equipment types, e.g., transformers, 2 breakers, reclosers, regulators, switches, and lines.²⁴ 3 Other than what is included with the LCIRP, it is not clear what other in-house design standards/tools (e.g., application guidelines, line designs, substation designs, system 4 5 protection) are available for use by in-house staff and external contractors (e.g., engineering firms conducting system studies). However, Liberty's process is similar to 6 7 that of other utilities and appears to be reasonable. 8 **Q**. What is the Department's assessment of Liberty's distribution system planning 9 criteria? Liberty updated its Distribution Planning Criteria (from 2016 to 2020) as part of 10 A. settlement agreement Docket No. DE 19-064.²⁵ Changes were made to move Liberty's 11 criteria closer to that of other utilities in the region, in particular, National Grid.²⁶ 12 13 A summary of these changes is tabulated in Attachment B of Appendix D of the LCIRP.²⁷ Under normal operating conditions, the approved changes reflect increased 14 15 operational risk, i.e., ratings for distribution feeders, sub-transmission lines, and 16 transformers were increased before violations are flagged, which potentially reduces the number of replacements and capital projects. If reliability performance remains within 17 18 agreed-to limits, these changes should result in acceptable system performance. 19 Under contingency (N-1) conditions, similar actions have been taken, e.g., moving from 20 36 MWhrs to 120 MWhrs of load at risk, or from 2.5 MW to 10 MVA (10 MW if power 21 factor = 1) for loss of a sub-transmission supply line; or 60 MWhrs load at risk to 180

 23 Id. at Bates 40.

²⁴ Id. Appendix D at Bates 184-191.

²⁵ *Id.* at Bates 28.

²⁶ Id. Appendix D at Bates 199.

1		MWhrs for loss of a transformer larger than 10 MVA. As with the above normal
2		operating conditions, these contingency criteria changes should result in acceptable
3		system performance if reliability remains within agreed-to limits.
4		With the caveats stated above, the Department believes the updated and approved
5		planning criteria are reasonable.
6	Q.	Is the Company planning any further revisions to its planning procedures?
7	A.	The Department is not aware of any further revisions to Liberty's planning procedures.
8		<u>RSA 378:38, II – Demand Side Management</u>
9	Q.	Does Liberty's LCIRP include a discussion of demand-side energy management
10		programs, including conservation, efficiency, and load management programs?
11	A.	The Company states that it has offered energy efficiency ("EE") and other demand side
12		management ("DSM") programs to its customers for the past twenty years. Since 2002,
13		Liberty has collaborated with the other New Hampshire utilities to deliver coordinated
14		energy efficiency solutions to customers, residential, municipal, commercial and
15		industrial throughout the state. These programs are offered under the NHSaves TM
16		Programs ("NHSaves Programs") brand. In 2016, Liberty was a party to a settlement
17		agreement filed with the Commission in Docket DE 15-137 that lead to the establishment
18		of the state's Energy Efficiency Resource Standard ("EERS"). ²⁸ In 2020, Liberty was
19		also a party to the settlement agreement filed in Docket DE 20-092 involving the 2021-
20		2023 New Hampshire Statewide Energy Efficiency Plan based on the EERS. The EERS
21		is the framework within which the NHSaves Programs have been implemented since
22		2018. In 2022, HB 549 amended the statute applicable to energy efficiency making the

²⁷ *Id.* Appendix D at Bates 201.
²⁸ *Id.* at Bates 93-94.

1	framework based on specific system benefit charge rates instead of the EERS being the
2	driving element of EE. Since 2002, Liberty reports that its energy efficiency programs
3	have delivered total lifetime savings of 1.3 million kWh equating to customer savings of
4	approximately \$140 million. ²⁹ Liberty estimates the average cost of a saved lifetime kWh
5	under its programs to be 3.36 cents. In the current LCIRP submittal, Liberty has
6	provided extensive information regarding the Company's ratepayer funded EE programs
7	and new initiatives including a description of a load curtailment proposal for 2021-2023
8	in the form of an Active Demand Reduction ("ADR") program based on the design of
9	pilot programs offered by Eversource and Unitil, potentially serving 162 participants and
10	generating an average of 5,293 kW summer-peak savings per year. ³⁰ Liberty also
11	references a plan to undertake an energy optimization ("EO") pilot that seeks to minimize
12	energy usage across all energy sources by emphasizing the deployment of cold climate
13	heat pumps to displace the use of fossil fuels for residential heating. ³¹ The estimated
14	energy impact of the EO Program is summarized in Table 6.7, page 115 (Bates 118) of
15	the LCIRP. However, both proposals were subsequently dropped from the final version
16	of the 2021-2023 Triennial Energy Efficiency Plan approved by the Commission in Order
17	No. 26,621 on April 29, 2022, in Docket No. DE 20-092, and the status of both programs
18	is unknown at this time.
19	As discussed below, Liberty has also incorporated and implemented a NWS and Non-
20	Wires Alternative ("NWA") evaluation process screening tool for system planning and

- for certain customers based on location and customer type.³² 21
 - ²⁹ *Id.* at Bates 96.

³⁰ *Id.* at Bates 109.
³¹ *Id.* at Bates 108-117.
³² *Id.* at Bates 42-48.

- 1 Q. What is the Department's assessment of Liberty's DSM and NWA efforts?
- A. The following metrics are evaluated by Liberty when investigating traditional and NWS
 solution alternatives: Cost, reliability, feasibility, performance, and environment.³³
 For potential NWS solutions, Liberty considers the following technologies: Energy
- 6 (e.g., wind, solar).³⁴ Liberty's goal for NWS is to defer or eliminate the need for upgrades
 7 to transmission and/or distribution systems.

efficiency, demand response & load control, energy storage, and distributed generation

8 NWS screening guidelines utilized by Liberty's system planners to identify potential 9 NWS candidates are as follows: 1) when the identified need is at least 24 months in the 10 future to allow time to develop NWS; 2) when the need is not based on asset conditions; 11 or 3) when traditional solutions will cost more than \$500,000.³⁵ Project-specific 12 exceptions are possible if they can be justified. Liberty also uses an NWS Analysis 13 Workbook³⁶ to compare and rank alternatives.

Solution alternatives are scored based on the following weighted factors: 1) cost (30%); 2) reliability risk (20%); 3) feasibility risk (20%) of addressing the identified needs including operational complexity and flexibility; 4) performance risk (20%); and 5) environmental risk (10%). A total assessment score is calculated for each alternative based on a scoring system of from 1 (lowest or worst) to 4 (highest or best). The alternative with the highest total assessment score is then chosen as the preferred alternative.³⁷

5

³³ Id. Appendix D, DAS-16 Non-Wires Solutions, December 2020, at Bates 314.

³⁴ *Id.* at Bates 38.

³⁵ Id. Appendix D, DAS-16 Non-Wires Solutions, December 2020, at Bates 317.

³⁶ Id. Appendix D at Bates 319-321

³⁷ *Id.* Appendix D at Bates 318 and Appendix F Bates 426-428.

1	As part of the requirements of the approved Settlement Agreements in Docket Nos. DE
2	17-136, DE 17-189, and DE 19-120, Liberty agreed to provide a grid needs assessment
3	for projects with potential NWS whereby traditional solutions would be \$500,000 or
4	greater. This assessment was provided in Table 18, Bates 406, of Appendix F of the
5	LCIRP. ³⁸ The number of traditional projects having potential NWS solutions were
6	identified as follows: 2023 – five projects; 2024 – three projects; and 2025 – six projects.
7	The LCIRP included the Bellows Falls Area System Planning Study 2020 to illustrate the
8	process for investigating traditional and NWS solution alternatives. ³⁹ Four alternatives
9	were developed based on meeting capacity needs: 2 traditional solutions (system
10	upgrades); and 2 NWS (solar + battery storage) solutions. Total assessment scores fell
11	within a very small range: 2.48 (traditional) to 2.82 (NWS) on the 4-point scale (4 =
12	best). The LCIRP details each of the four alternatives.
13	This was followed by a Report on Wires and Non-Wire Solutions to Address Reliability
14	in the Bellows Falls Area – 2022 where six alternatives were developed (three traditional
15	and three NWS) based on meeting reliability needs. ⁴⁰ Two of the NWS alternatives were
16	rejected for being too expensive, leaving one NWS alternative (solar + battery storage)
17	and three traditional alternatives (system upgrades). The same scoring process was used
18	as in the earlier study. Total assessment scores fell within a larger range: 1.93 (NWS) to

20 two different objectives and two different results.

3.42 (traditional) on a 4-point scale (4 = best solution), same system (Bellows Falls), but

³⁸ *Id.* Appendix F at Bates 406.

³⁹ Id. Appendix F, Bellows Falls Area System Planning Summary 2020, at Bates 386-428.

⁴⁰ <u>https://www.puc.nh.gov/Regulatory/Docketbk/2021/21-004/LETTERS-MEMOS-TARIFFS/21-004_2022-06-</u> 02 GSEC REPORT-WIRES-NONWIRES-RELIABILITY-BELLOWS-FALLS.PDF

1 Liberty has a process in place⁴¹ to ensure potential NWS solutions are an integral part of 2 the planning process that includes the use of data-driven NWS Analysis Workbooks.⁴² 3 They are also actively investigating/promoting behind-the-meter technologies an example of which is their Battery Storage Pilot Program where up to 200 Tesla Powerwall 2 4 5 batteries were installed at the customer premises during Phase 1 with the potential for an additional amount to be installed if approved for Phase2.⁴³ Pilot project objectives were 6 7 to reduce peak load, provide backup power to participating customers, and learn more 8 about customer behavior through time-of-use rates. Consideration of alternatives was not an objective, and as a result, were not developed.⁴⁴ 9

Liberty's project evaluation flow chart clearly shows NWS evaluations being integral to the distribution planning process.⁴⁵ Yet, other than the Battery Storage Pilot Program, no other NWS solutions have been implemented in Liberty's territory. According to Liberty, when evaluated against traditional solutions (poles & wires, tree trimming & removal), NWS solutions tend to cost more than traditional.⁴⁶ It has been Liberty's experience that NWS solutions are often found to be infeasible or noncompetitive when traditional solutions address asset condition along with other issues.⁴⁷

As a result, the Department believes that Liberty's current approach to NWS is not sufficiently robust. A more aggressive stance (e.g., hybrid solutions) could be taken when evaluating NWS alternatives against traditional solutions, including modifying NWS selection guidelines to make them more competitive. For example, it might be

⁴¹ LCIRP Appendix D at Bates 315.

⁴² *Id.* Appendix C at Bates 038; and Appendix D at Bates 315 and 318.

⁴³ Docket No. DE 17-189, Petition to Approve Battery Storage Pilot Program, Order No. 26,209, January 17, 2019.

⁴⁴ Attachment JED/RDW/JJD-3 Data Request DOE 8-4.

⁴⁵ LCIRP Appendix D at Bates 315.

⁴⁶ Based on information obtained from Liberty witnesses at the April 15, 2022 Technical Session.

⁴⁷ LCIRP at Bates 39.

worth considering if the "24 months in the future" and/or the above \$500,000 threshold
 guidelines are too restrictive.

3 RSA 378:38, III – Supply Options

4Q.Does Liberty's LCIRP include an assessment of supply options including owned5capacity, market procurements, renewable energy, and distributed energy

6 resources?

7 As stated earlier, New Hampshire restructured its retail electricity market in 1998, A. 8 severing generation from distribution. As a result, Liberty, along with all other New 9 Hampshire electric distribution companies presently do not own any generating assets. 10 Liberty obtains its electricity supply every six months through a solicitation process that 11 is reviewed and approved by the Commission. This solicitation, bid evaluation, and 12 procurement process was first approved and established by the Commission in 2006 in 13 Docket No. DE 05-126, and has been amended multiple times to account for changes in 14 the wholesale market for electricity. In conjunction with this solicitation process, Liberty 15 also solicits Renewable Energy Certificates ("REC") twice per year to meet its Renewable Portfolio Standard requirements. ⁴⁸ The Company does not own any 16 17 transmission assets and obtains its transmission service from National Grid. In terms of 18 distributed energy resources ("DER"), Liberty reports that it utilizes Hosting Capacity 19 Analysis ("HCA") to inform its distribution system planning for accommodating 20 potential DERs in its service territory. By incorporating HCA in its system planning, 21 Liberty states that it will be able to more efficiently plan for integration and hosting 22 capacity for DERs at its substations. Liberty is currently developing an HCA map,

⁴⁸ *Id.* at Bates 24-26.

1	process, and criteria so as to better inform the decision-making process. ⁴⁹ The Company
2	plans to have a total of three percent of its system peak under a dedicated DER program
3	by the end of 2024 and six percent by 2029. ⁵⁰
4	Liberty also provided a detailed discussion of the supply situation related to ISO-NE,
5	however, this discussion is now dated since the LCIRP was submitted on January 15,
6	2021. ⁵¹ As Liberty points out, ISO-NE is dependent on natural gas fueled generation for
7	approximately 40% of energy production for 2019. For 2021 ISO-NE reported that gas-
8	powered generation provided 53%. ⁵² With the onset of the war in Ukraine, the global
9	natural gas market has structurally changed with European countries increasing their
10	natural gas imports to offset decreases in supply from Russia. New England gas supplies
11	are exposed to the global natural gas market because LNG is a component of the natural
12	gas supply. As "the marginal unit setting the energy market clearing price is most often a
13	natural gas fired generator, "the energy supply future has potentially changed
14	significantly since Liberty's January 2021 filing. ⁵³ Consequently, the Department
15	recommends that the Commission direct Liberty to include in its supplement to the
16	LCIRP an updated discussion on the impacts of a more global natural gas market on price
17	and the longer-term availability of capacity.
18	RSA 378:38, IV – Distribution and Transmission Requirements

Does Liberty's LCIRP include an assessment of distribution and transmission 19 Q.

⁴⁹ *Id.* at Bates 85-86.
⁵⁰ *Id.* at Bates 92-93 and Appendix E at Bates 365 and 367.
⁵¹ *Id.* at Bates 18-24.

⁵² http://www.iso-ne.com/about/what-we-do/key-stats/resource-mix

1 requirements?⁵⁴

A. Yes. The LCIRP includes an assessment of distribution and transmission requirements
as described in the summaries below.

4 Transmission

5	Liberty is a	transmission	customer of National	Grid and as	s such does no	t directly
	2					~

6 participate in the ISO-NE planning process or the advisory role of NEPOOL. As a result,

7 Liberty provides National Grid with electrical system information that National Grid

8 needs to fulfil its obligations to provide service as a transmission owner. That

9 information includes distribution system peak and off peak loads, power factor, and the

10 actual or estimated impacts of distributed generation and demand side management

11 efforts.⁵⁵ As a transmission owner, National Grid is a participant in ISO-NE's Regional

12 System Plan development.

13 **Distribution**

As explained above, Liberty's distribution system is divided into two PSA's: East and West. PSA studies are performed when conditions (e.g., load additions) change within a given PSA, and are documented in a *Distribution PSA Study* report describing study assumptions, procedures, economics, conclusions, and recommendations.⁵⁶ PSAs are totally independent from each other.⁵⁷

⁵⁴ The statute requires that the assessment should include, as applicable, an assessment of the benefits and costs of "smart grid" technologies, and the institution or extension of electric utility programs designed to ensure a more reliable and resilient grid to prevent or minimize power outages, including but not limited to, infrastructure automation and technologies. RSA 378, IV.

⁵⁵ LCIRP at Bates 26.

⁵⁶ *Id.* at Bates 180-181.

⁵⁷ *Id.* Appendix D at Bates 196.

1 Liberty conducts distribution PSA studies with industry-accepted third-party software 2 and detailed system models using its latest load forecasts.⁵⁸ Studies are based on PUC approved *Electric Distribution Planning Criteria*.⁵⁹ What-if simulations identify needs 3 and potential solutions. Before/after simulations verify solution alternatives.⁶⁰ Wires 4 5 (traditional) and NWS solution alternatives are considered when developing proposed solutions.⁶¹ 6

7 Studies are conducted to ensure reliability performance is maintained and/or improved objectives.⁶² 8 study Capacity based on specific needs. asset condition 9 replacements/upgrades, environmental considerations, and safety are integral to the 10 planning process.

The LCIRP included the Lebanon area study as a distribution planning example.⁶³ Four 11 solution alternatives/options were developed and ranked, 2 traditional (system upgrades) 12 13 and 2 NWS (solar + storage; DER for large customer). The traditional solution (option 2) 14 scored the highest (best solution). Details are included in the study report. However, 15 individual alternatives and "total assessment" scores for each option were not provided 16 until compiled on the NWS evaluation worksheet included in Appendix G.1 of the report.⁶⁴ It would be helpful if the four alternatives cited as Options 1-4 on the NWA 17 18 Evaluation Summary worksheet would have been explained in the body of the report or at 19 least correlated to specific pages in the report.

⁵⁸ *Id.* Appendix D at Bates 198.

⁵⁹ *Id.* Appendix D.

⁶⁰ Id. Appendix C and Appendix D.

⁶¹ Liberty 2021 LCIRP, Bates 181

⁶² Liberty 2021 LCIRP, Appendix D, Bates 198

⁶³ Liberty 2021 LCIRP, Lebanon Area System Planning Summary 2020, Appendix G

⁶⁴ Liberty 2021 LCIRP, Lebanon Area System Planning Summary 2020, Appendix G, Bates 478

1		The overall process followed by Liberty in its distribution analysis appears to be
2		reasonable and typical of how the industry conducts system planning studies.
3	Smar	t Grid Technology
4	Q.	Has the Company invested in smart grid technology in recent years?
5	А.	Yes. In 2019, Liberty engaged CMG Consulting to develop a grid modernization plan,
6		the results of which were summarized in a Grid Modernization Report (updated in
7		2020). ⁶⁵ Ten dedicated programs in four focus areas (metering, distribution automation,
8		customer connections, and smart city) were identified. Budgets were proposed for each
9		area along with 5-year and 10-year targets. ⁶⁶
10		Nine (9) pilot programs and corresponding budgets covering each of the four focus areas
11		was proposed as the next step. Metering (AMI) and distribution operations (fault
12		detection, load forecasting, conservation voltage reduction, asset management, islanding)
13		were the largest budget items over a 5-year period ⁶⁷ covering 2021-2025. ⁶⁸ During this
14		period, Liberty would monitor the results and adjust as needed in preparation for a
15		subsequent five-year period covering 2025-2029.69
16		The report refers to "grid modernization" activities as being important to overall success.
17		There is a distinction to be made between smart grid and grid modernization. Smart grid
18		is the implementation of technologies that increase system "visibility" using enhanced
19		communication (more sensors) and controls (more automation); e.g., distribution
20		automation (DA). Grid modernization is the process of enhancing the grid to make it

⁶⁵ Liberty 2021 LCIRP, Appendix E, *Grid Modernization: Developing a Pathway for Liberty Utilities in New Hampshire*, December 2020, CMG Consulting

⁶⁶ Ibid, Bates 328

⁶⁷ Ibid, Bates 354

⁶⁸ Ibid, Bates 364

⁶⁹ Ibid, Bates 366

1		more reliable, energy efficient, and resilient through a series of systematic upgrades that
2		can include technology, equipment, and controls that communicate and work together.
3		Smart grid is a subset of grid modernization. How far smart grid and grid modernization
4		programs are taken depends on a company's strategic objectives, physical constraints,
5		regulatory constraints, and budget.
6		Liberty, like most electric utility companies, invests in system upgrades that can be
7		classified as grid modernization activities and in upgrades that can be classified as smart
8		grid activities that involve enhanced communication between devices that provide system
9		operators with more actionable information (e.g., Liberty's recloser program).
10		According to Liberty, the highest ranked net present value grid modernization
11		opportunity to be implemented within the next five years (out of the ten proposed grid
12		modernization programs listed in the LCIRP) is conservation voltage reduction (CVR). ⁷⁰
13		However, no progress has been reported. ⁷¹ Therefore, the Department recommends the
14		Commission direct Liberty to in its supplement to the LCIRP an update on each of the ten
15		proposed grid modernization programs, with a focus on the top three net present value
16		opportunities.
17	Plan	ned Investments
18	Q.	Did the Department conduct a review of the planned distribution investments
19		described in the LCIRP?
20	А.	Yes. Unlike a rate case, specific rate proposals and revenue requirements are not at issue
21		in an LCIRP proceeding, therefore the review of capital investments for least cost
22		planning is not considered to be sufficiently rigorous or specific to support an

⁷⁰ *Id.* at Bates 089, 091
⁷¹ Attachment JED/RDW/JJD-3 DOE TS 1-8.

1	independent finding of prudence. As the Commission stated in its Order No. 26,362 in
2	Docket No. DE 19-139, an LCIRP "provides a regular snapshot of the factors supporting
3	a utility's investment decisions, which can be helpful in a later rate case when the
4	Commission determines whether the costs of an investment were prudently incurred."72
5	As such, the Commission's approval of the LCIRP does not represent a finding of
6	prudence with respect to any particular capital investment described in the Plan.
7	However, in order to complete a review of these planned investments, the utility must
8	provide sufficient detail of those capital projects in the proposed LCIRP. According to
9	Liberty's Plan, the Company's five-year budget totals \$124 million with spending on its
10	mandated and growth projects comprising 41 percent of the budget and spending on
11	discretionary programs comprising 59 percent of the budget. ⁷³ One of the major
12	deficiencies of the current Plan is that Liberty discusses these planned investments in
13	very general terms and at a high level, and provides little or no detail on investments or
14	projects that are currently underway. ⁷⁴ Although Appendix H does provide a listing of
15	capacity and reliability related improvements, there is no mention of Liberty's many
16	business-as-usual blanket projects, growth projects, and discretionary projects that
17	typically constitute some of the Company's largest investments. As a result, no
18	evaluations of specific planned capital investments or potential least cost alternatives
19	were included or available for the Department's review in this proceeding. This is
20	especially true for Liberty's ongoing investments in the Town of Salem largely associated
21	with the Tuscan Village development. Due to these omissions, DOE had to obtain

⁷² Docket DE 19-139, Eversource Energy 2019 Least Cost Integrated Resource Plan, Order No. 26,362 dated June 3, 2020 at 8. ⁷³ LCIRP at Bates 10. ⁷⁴ *Id.* at Bates 55-57.

1	additional information through discovery. In response to discovery request Staff 1-12,
2	Liberty provided its 5-year capital budget which included mandated, growth, and
3	discretionary projects totaling \$124 million. ⁷⁵ Liberty also updated Figure 4-10 of the
4	LCIRP in data response Staff 1-1 to include the project costs for each the planned
5	investments listed. ⁷⁶ Also, in response to data request Staff 1-25, the Company provided
6	a list of needed projects which had been inadvertently excluded from the Plan because
7	they were related to resolving asset condition issues. ⁷⁷
8	The Department appreciates the Company's submission of additional project information,
9	however, Liberty did not submit specific project documentation (i.e. Business Cases) to
10	support those investments as part of its LCIRP filing. ⁷⁸ This is in sharp contrast with
11	Eversource's LCIRP filing in Docket No. DE 20-161 where Eversource included its
12	project authorization forms in Appendix L of that filing describing numerous projects that
13	were in progress or planned to commence at the time of the LCIRP submission. This is
14	also in contrast to PUC Staff's (now DOE's) prior understanding from Docket No. DE
15	19-120 where the Commission recognized Staff's recommendation that Liberty's
16	"January 2021 LCIRP provide a level of detail regarding planned capital projects, circuit
17	level load forecasts, and system visibility consistent with Unitil's 2016 LCIRP filing,"79
18	meaning that sufficient detail should be provided to allow "Staff to evaluate how the
19	Company reviews alternate solutions and other issues related to decisions on capital

⁷⁵ Attachment JED/RDW/JJD-4, Data Request Staff 1-12.
⁷⁶ Attachment JED/RDW/JJD-5, Data Request Staff 1-1.
⁷⁷ Attachment JED/RDW/JJD-6, Data Request Staff 1-25.
⁷⁸ Attachment JED/RDW/JJD-7, Data Request Staff 1-21.

⁷⁹ Docket No. DE 19-120, Liberty Utilities 2019 Least Cost Integrated Resource Plan, Order No. 26,408 dated September 23, 2020 at 4.
1	investment."80 Consequently, DOE believes that ongoing projects impacting load
2	growth, grid needs, and reliability, in particular those projects associated with Tuscan
3	Village, should have been included in the LCIRP to provide sufficient documentary
4	support for the purposes of allowing DOE, and other interested parties, to conduct a
5	thorough review of the Plan.
6	In terms of Salem and the related Tuscan Village projects, the Department (and
7	previously PUC Staff) have continuing concerns involving Liberty's planning and
8	management of that development dating back to the Company's two most recent rate
9	cases, Docket Nos. DE 16-383 and DE 19-064, and associated step adjustment requests.
10	DOE's primary issues continue to be as follows:
11	• The project as a whole has been predicated on speculative load that has yet to
12	materialize as planned. Liberty's original total load projection was 14 to 17
13	MW and was recently updated to 25.8 MW. To date, only 6.7 MW of
14	verifiable load has been installed. ⁸¹
15	• Developers who are the source of new load, and receive the primary benefits of
16	this system expansion, have contributed little thus far (\$334,781) in terms of
17	contributions in aid of construction for various connections and installed
18	infrastructure (approximately \$35 million) to serve the Tuscan Village
19	development, meaning that Liberty will have to spread virtually all of those
20	costs among all of Liberty's ratepayers. ⁸²

⁸⁰ Docket No. DE 16-463, Unitil Energy Systems, Inc. 2016 Least Cost Integrated Resource Plan, Order No. 26,098 at 6.

⁸¹ Attachment JED/RDW/JJD-8, Data Request DOE TS 2-1 ⁸² *Id.*

1	• The Company chose the highest cost option of \$35 million out of a total six
2	possible alternatives for serving load at Tuscan Village. ⁸³
3	• Opting to build out the overall project based on 115kV supply as opposed to
4	23kV would likely result in significant over-build if the forecasted loads do not
5	materialize.
6	• Liberty has a history of incurring significant cost overruns for larger, more
7	complex projects. ⁸⁴
8	• Liberty's planning process for the Salem area failed to take into consideration
9	simulations to determine overall costs to fully upgrade either Baron Avenue or
10	Salem Depot substations, of both, to satisfy criteria violations and resolve asset
11	condition concerns. To provide a more complete comparison of project
12	alternatives/plans, we believe the following additional simulations could have
13	been investigated: 1) How can Salem Depot and/or Barron Avenue Substations
14	be upgraded to solve all contingency conditions and asset condition concerns if
15	near-by property was <u>not</u> available for purchase and cost is not a constraint? 2)
16	How can Salem Depot and/or Barron Avenue Substations be upgraded to solve
17	all contingency conditions and asset condition concerns if near-by property
18	was available for purchase and cost is not a constraint?
19	The Department provides the above overview for the edification of the Commission
20	based on the Commission's previously expressed desire for a "snapshot" of factors
21	affecting the Company's investment decisions as it relates to the LCIRP and for

⁸³ Attachment JED/RDW/JJD-9, Data Request DOE 5-3. Liberty's total cost for the Tuscan Village development was recently updated to \$36.8 million.

1		consideration in a future rate case. ⁸⁵ The Department intends to revisit these issues at
2		that time.
3		In light of the issues raised above, the Department recommends that Liberty rework and
4		update the sections in the LCIRP on planned system investments and grid needs
5		assessment as part of the supplement to describe and address the impacts of the ongoing
6		system build out in Salem and Tuscan Village, and any other ongoing or near-term
7		projects (in excess of \$250,000) that have been initiated or are about to be initiated.
8	Q.	Were any of the planned investments included in the LCIRP also included in the
9		Company's third step adjustment request in Docket No. DE 22-035?
10	A.	As discussed above, Liberty provided no specific details on the planned investments
11		included in the Plan. However, all of the projects listed in Liberty's third step adjustment
12		filing appeared to be completed in 2021 and were supported by testimony and project
13		documentation. In that Docket, the Department recommended removal and deferral of
14		two growth projects from the step adjustment, both projects related to Tuscan Village, in
15		the amount of \$1.2 million. The Commission concurred with the Department's
16		recommendation. ⁸⁶
17	<u>RSA</u>	<u> 378:38, V – Environmental Compliance</u>
18	Q.	Does the Eversource LCIRP include an assessment of plan integration and impact
19		on state compliance with the Clean Air Act of 1990, as amended, and other
20		environmental laws that may impact a utility's assets or customers?

 ⁸⁴ See Docket No. DE 16-383, Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Request for Change in Rates, Exhibit 11, Testimony of Jay Dudley; and Docket No. DE 19-064, Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities Request for Change in Rates, Exhibit 21, Testimony of Jay Dudley.
 ⁸⁵ Docket DE 19-139, Eversource Energy 2019 Least Cost Integrated Resource Plan, Order No. 26,362 dated June 3, 2020 at 8.

⁸⁶ See Docket DE 20-035, Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty, Petition for Approval of Step Adjustment, Order No. 26,661 dated July 29, 2022 at 4-5.

1	А.	As stated earlier, the Department believes that the significance of this criteria is reduced
2		for Liberty as compared to a utility that owns electric generation. Liberty does provide
3		limited consideration of environmental impacts as they relate to its capital investment
4		planning, procurement of REC's, and the Company's compliance with environmental
5		regulation. ⁸⁷
6	<u>RSA</u>	<u> 378:38, VI – Environmental, Economic, and Energy Price and Supply Impact</u>
7	Q.	Does the Liberty LCIRP include an assessment of the plan's long- and short-term
8		environmental, economic, and energy price and supply impact on the state?
9	A.	As referenced above, Liberty's system and project planning process includes the use of
10		econometric modeling to consider demand, reliability, feasibility, cost, DER options, and
11		value-added benefits involving planned investments and alternatives. Environmental
12		impacts and risks are also assessed in the capital project planning process, when
13		applicable.
14	<u>RSA</u>	378:38, VII Consistency with State Energy Strategy
15	Q.	Does the Liberty LCIRP include an assessment of plan integration and consistency
16		with the state energy strategy under RSA 12-P?
17	A.	Yes. In our assessment, Liberty's 2021 LCIRP is generally consistent with the state
18		energy strategy then in effect at the time of the Company's filing on January 15, 2021.
19		Since that time, the Department released a new and revised state energy strategy in July
20		2022. The policy goals and objectives outlined in the new state energy strategy are not
21		significantly different from those provided in the prior strategy; therefore, we find that
22		Liberty's 2021 LCIRP still remains consistent with the state energy strategy.
23		

⁸⁷ LCIRP at Bates 11-20,33,36-38

1 IV. BELLOWS FALLS RELIABILITY REPORT

Q. In a letter to the Commission dated February 28, 2022, Liberty reported what it
characterized as a "dire reliability picture" in the Charlestown/Bellows Falls service
area. Has Liberty assessed the Bellows Falls area system's reliability?

5 A. Yes. Liberty has provided assessments in their Bellows Falls Reliability Report 2022,
6 ("Report") filed with the Commission on May 2, 2022,⁸⁸ and in their "Reliability Review

7 2020", Appendix H of Liberty's LCIRP.

8 Q. Did the Department review the Bellows Falls Reliability Report 2022, and what 9 were your conclusions?

10 A. Yes. The Report's data for the Bellows Falls area reflected that the 43-12L1 ("12L1") circuit serves 2,471 customers and is 128 miles long. The 43-12L2 ("12L2") circuit 11 serves 1,286 customers and is 60 miles long.⁸⁹ The Report also reflects that these two 12 13 circuits serve 8% of the customer base but account for 20.87% of SAIFI and 40.86% of SAIDI system outage statistics. ⁹⁰ Liberty attributes the low reliability to tree issues and 14 an inability to switch load due to a lack of circuit ties.⁹¹ The Department found the 15 16 Report's data and findings consistent with the "Reliability Review 2020," Appendix H of Liberty's LCIRP. Based on the data presented in the Report, the Department concluded 17 that Liberty's reliability data and assessment support the conclusion that the 12L1 and 18 19 12L2 distribution circuits have the worst reliability performance in Liberty's system over

⁸⁸ <u>https://www.puc.nh.gov/Regulatory/Docketbk/2021/21-004/LETTERS-MEMOS-TARIFFS/21-004_2022-05-02_GSEC_BELLOWS-FALLS-RELIABILITY-RPT.PDF</u>

⁸⁹ *Id*. Table 1, at 3.

⁹⁰ Id. at 3.

⁹¹ Id. at 12.

the past five years as measured by circuit-related duration (CKAIDI) and circuit related
 frequency (CKAIFI) measures.⁹²

3 The Report provided reliability data that identified the primary causes of the poor reliability on the distribution circuits 12L1 and 12L2. "Fallen Trees" and "Tree-Broken 4 5 Limbs" categories represent the significant causes of service interruption on 12L1 and 6 12L2, representing "62% of total incidents and 74% of total customer minutes 7 interrupted".⁹³ Based upon the data provided, the Department believes mechanical 8 damages to the distribution circuit facilities from "Fallen Trees" and "Tree-Broken 9 Limbs" were the major contributing factors to the service interruptions. Outages from 10 tree limbs "touching" the circuits were insignificant in comparison, as evidenced by the "Tree Growth" category data provided in the Report. Generally, mechanical damage to 11 12 distribution circuit facilities includes conditions such as downed wires, broken poles, broken crossarms, or broken pole hardware. 13

The Report identifies Liberty's action plan for improving reliability on the 12L2 circuit. However, the 12L1 circuit is not addressed. The Report offers vegetation management and reconductoring as the two solutions to address the reliability issues on the 12L2 circuit.

18 Q. Do you agree with the recommended solutions in the Report?

19 A. No. The Department does not agree that the solutions presented in the report would 20 directly address these mechanical damage causes and effects. Also, the Report did not 21 include the use of, or identify any value added from, the installation of automatic 22 reclosing protection devices, such as reclosers or trip-savers. Additionally, Liberty has

⁹² Id. at 8.

⁹³ *Id.* at 6.

- not demonstrated that a significant improvement in reliability would result once one of its
 solutions is implemented.
- Liberty's tree trimming program for distribution circuits is on a 4-year cycle. 12L1 was
 last trimmed in 2018 (4 years ago), and 12L2 was last trimmed in 2017 (5 years ago).
 This suggests that Liberty did not follow its 4-year trim policy in this area.
- In reviewing plots of CKAIDI (circuit outage duration),⁹⁴ 12L1 is experiencing 6 7 significantly more tree-only related outage interruptions than 12L2. Outages occur from 8 tree-related equipment failure or damage. Additionally, the plots of CKAIFI (circuit outage frequency)⁹⁵ show that tree-only outage frequency is significantly greater for 9 10 12L1 than for 12L2. From the reliability performance statistics provided in the Report, 11 addressing tree-only issues for circuit 12L1 would have the most impact and should be 12 addressed first, starting with the 2022 tree trimming on 12L1. However, since the 13 reliability on 12L1 is still not in an acceptable range, the tree trimming approach may 14 need re-evaluation.

The Report reflects that the 12L2 circuit was last trimmed in 2017 and is already one year behind Liberty's stated 4-year normal trimming cycle. A parallel accelerated trimming effort may need to be made on the 12L2 circuit to bring it back on the trimming cycle schedule. In addition, danger tree removal or off-cycle trimming of overhanging danger limbs may be part of the solution. This practice of supplemental hot-spot trimming based on routine field inspection by Liberty crews and contractors is consistent with good industry practices. Spot and danger tree/limb trimming may be accommodated within

⁹⁴ Id. at 9.

⁹⁵ Id. at 10.

- 1 existing vegetation management budgets by increasing the length of the routine trimming 2 cycle in areas with less outage impact from vegetation encroachment. 3 The Report presented reconductoring with spacer cable as the second potential solution 4 for the reliability improvement on the 12L2 circuit where the bare conductor is prone to 5 tree-related outages. Specifically, Liberty proposes to replace 1.5 miles of bare wires 6 with spacer cable on the 12L2 circuit along Watkins Hill Road in Walpole, which Liberty 7 considered a pocket of poor performance.⁹⁶ The proposed reconductoring solutions for 12L1 and 12L2 circuits were also included in 8 9 both the "Reliability Review 2020", Appendix H of Liberty's LCIRP" as part of Liberty's Enhanced Bare Conductor Replacement Program⁹⁷ and the "Bellows Falls Area System 10 Planning Summary 2020" as part of their Grid Needs Assessment for Potential Non-11 Wires Solutions.⁹⁸ A portion of the 12L2, Watkins Hills Phase 3, was proposed for 2023 12 13 at an estimated cost of \$550,000; and 12L1 was proposed for 2024 at an estimated cost of 14 \$790,000. The resulting reliability improvement on the 12L2 circuit is expected to be an 8% reduction in frequency and a 4% reduction in duration.⁹⁹ 15 16 Q. Does the Department have concerns with this proposed reconductoring solution? 17 A. As discussed previously, the Report has stated that most of the outages on both Yes. 18 circuits were caused by trees/limbs falling on the lines and not limbs making incidental
- 19 contact. Therefore, the Department believes that based on the data provided by Liberty,
- 20 reconductoring portions of 12L2 with covered wire along the same route may have a
- 21 minimal outage-reduction impact.
 - ⁹⁶ *Id.* at 11-12.

⁹⁷ Liberty 2021 Least Cost Integrated Resource Plan, Appendix H, Table 19 and 20, at Bates 502-503.

⁹⁸ Id. Appendix F, Table 18, at Bates 406.

⁹⁹ Attachment JED/RDW/JJD-10 Data Request No. DOE 7-11.

Q. What are the Department's conclusions regarding the reliability solutions presented in the Report?

3 Based upon the information provided by Liberty, the Department believes the solution to A. 4 most of the reliability issues occurring on distribution circuits 12L1 and 12L2 could be 5 tree trimming focused and may include a combination of routine tree trimming, hot-spot 6 tree trimming, and danger-tree management focused on actual field observed conditions. 7 Liberty could also consider using reclosing protection devices in tree-affected areas. 8 Additionally, based on the reliability improvement data contained in the Report, there 9 appears to be limited reliability value on mitigating the impact of falling danger trees by 10 reconductoring with spacer cable.

11 V. CONCLUSIONS AND RECOMMENDATIONS

12 Q. Please summarize your recommendations.

13 The Company's LCRIP and related reports such as the NWS Report provide the outlines A. 14 of how the Company will evaluate and plan its distribution system in the future. To 15 review and understand this information, the Department engaged Liberty through 16 numerous data requests and several technical sessions. We reviewed the Company's standards in the context of the expectations of a modern customer. We recognize that the 17 18 LCIRP process does not pre-approve any planned investments and that projects evolve or 19 change over time. As we stated above, for any particular project, the prudence review 20 occurs when the Company requests its inclusion in rate base during a rate case or step 21 adjustment proceeding. However, during the course of this review, we discovered a lack 22 of detail and omissions of some information, in terms of Liberty's planned investments.

1	We detected several deficiencies in the Plan that we recommend should be addressed by
2	the Company. Therefore, the Department makes the following recommendations:
3	• Liberty should provide a supplemental filing that addresses the following areas:
4	1. Specific reporting on each of the criteria in RSA 378:39, to be supported by
5	written testimony, as set out in the Commission's Order No. 26,225 in Docket
6	No. DG 17-152.
7	2. The impacts of existing and new projected load in the Salem service area on
8	Liberty's demand forecasting, planned capital investments, and grid needs
9	forecast.
10	3. Rework and update the sections in the LCIRP involving planned system
11	investments and grid needs assessment to include project descriptions,
12	projected costs, and any alternatives considered related to the ongoing system
13	build out in Salem and Tuscan Village, and any other ongoing or near-term
14	projects (i.e. over the next 2-year period in excess of \$250,000) that have been
15	initiated or are about to be initiated.
16	4. Update on the criteria in RSA 378:38 III-Supply Options. The supplement
17	should address the substantial impacts of the current global natural gas market
18	on electric rates and the longer-term availability of capacity.
19	5. Provide an update on each of the ten proposed grid modernization programs,
20	with a focus on the top three net present value opportunities.
21	• Liberty should continue its participation in the processes set forth by the
22	Commission's "guidance" in Docket IR 15-296, Order No. 26,575, to develop its next

1		LCIRP, and that the substance of that LCIRP should align with the expectations
2		expressed by the Commission in that Order.
3		• Liberty should adopt a more aggressive stance (e.g., hybrid solutions) when
4		evaluating NWS alternatives against traditional solutions, including modifying NWS
5		selection guidelines to make them more competitive. For example, it might be worth
6		considering if the "24 months in the future" and/or the above \$500,000 threshold
7		guidelines are too restrictive.
8		• Liberty should consider that the solution to most of the reliability issues occurring on
9		problem distribution circuits (e.g. Charlestown/Bellows Falls) could be focused tree
10		trimming and may include a combination of routine tree trimming, hot-spot tree
11		trimming, and danger-tree management focused on actual field observed conditions.
12		Liberty should also consider using reclosing protection devices in tree-affected areas.
13		Additionally, based on the reliability improvement data contained in the reports
14		provided, there appears to be limited reliability value on mitigating the impact of
15		falling danger trees by reconductoring with spacer cable.
16	Q.	Does that conclude your testimony?
17	A.	Yes, it does.

18

19

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment RDW-1 Page 1 of 7

Ronald D. Willoughby, PE

Position:	Executive Consultant
Years' Experience:	45+
Education:	 Honorary Professional Degree of EE – University of Missouri-Rolla (MO Univ. of Science & Tech)(MS&T) Post Graduate Studies – Carnegie-Mellon Univ (CMU) MSEE Power Engineering – Carnegie-Mellon Univ. BSEE – University of Missouri-Rolla (UMR) Professional Engineer (PE) License – Pennsylvania

Key Qualifications:

Distribution Grid Modernization Planning: Systematic/incremental addition of smart grid devices; with technology, performance, and cost central to the planning process.

Renewables Integration and Impact on Utility Grid: Power system analysis/operation, architecture, configurations, distributed generation strategies, market analysis, portfolio analysis, wind power and PV integration.

Conservation Voltage Reduction (CVR): Using smart grid data points and controllable VAR sources to regulate distribution voltages in near real time to reduce demand, lower peaks (kW), and save energy (kWh).

Transmission & Distribution Planning: Power flows; reliability analysis; transient & long-term stability; load shedding; reconfiguration schemes; contingency analysis; root cause analysis; distributed generation; energy storage strategies; protection/coordination; systematic replacement/upgrade strategies; and special protection systems (SPS).

Advanced Protection, Automation & Control: Sensor, communication, sectionalizing, controllable VAR sources, voltage control, expert systems, demand, and energy reduction application strategies.

Distribution Substation Design and Specifications Review: Modular Integrated Transportable Substation (MITS) application, design, specification, and implementation; renewables integration; volt/VAR control; substation upgrades; and distribution automation/protection strategies.

Patents & Publications

Earned U.S. Software <u>Patent</u> 6549880 for *Improving Reliability of Electrical Distribution Networks* (2003).

More than <u>60</u> publications relating to electric power systems analysis and operation.

Project Types

Distribution Grid Modernization Planning: Systematic/incremental addition of smart grid devices; with technology, performance, and cost central to the planning process.

Conservation Voltage Reduction (CVR): Using smart grid data points and controllable VAR sources to regulate distribution voltages in near real time to reduce demand, lower peaks (kW), and save energy (kWh).

Renewables Integration: Main substation, collector systems, protection and control.

Power System Energy Use: Technical and non-technical loss evaluation and improvement measures; with specific expertise in island power systems.

Power System Automation: Application of sensor/communication packages, sectionalizing equipment, and SCADA systems to achieve performance targets.

Power System Reliability: Preventive actions and sectionalizing strategies to achieve reliability performance targets.

Power System Protection: Protection/coordination; systematic replacement/upgrade strategies.

Root Cause Analysis (RCA): For unexplained electric power system events.

Knowledge Management: Use cases for technical procedures associated with power system analysis/operation, expert systems, architecture, and configurations.

Project Management: Transmission analysis, distribution analysis, system protection, and reliability improvement.

Training: Power system design, reliability, protection, stability, and operation.

Representative Project Experience

Conservation Voltage Reduction (CVR)

- Project Manager and Technical Lead for Commonwealth Edison Company (ComEd) feasibility study to quantify energy and demand savings using distribution Voltage Optimization techniques. Objectives: 1) Minimize cost by initiating feeder upgrades to achieve minimum performance thresholds. 2) Maximize energy savings by optimizing performance while staying within Total Resource Cost (TRC) constraints.
- Co-Instructor of CVR workshop customized to meet specific ComEd engineering and energy efficiency department needs.
- Co-founder of a CVR Industry Consortium to guide CVR research, work with industry groups, develop policy recommendations, promote implementation strategies, and document the results.
- Technical lead for project commissioned by DOE to conduct a comprehensive study across the USA on CVR, including deployment strategies, costs, benefits, barriers, and potential solutions, through a broad market outreach effort.

Advanced Protection, Automation, & Control for Transmission & Distribution

- Co-Chaired (with the Director of R&D at We-Energies) Distribution Vision 2010 LLC (DV2010), a consortium of Investor Owned Utility (IOU) companies. Mission: To create and execute a roadmap of equipment and service requirements important to cost-effectively operating a reliable electric distribution system; 2002-2006. DV2010 was accountable to CEOs and CFOs of member utilities.
- Led EPC and turnkey solutions in support of electric utility companies for electrical distribution automation, medium voltage modular substations (distribution centers), and wind farm electrical distribution systems (from the base of the turbine towers through interconnection to the utility grid); 1985-1988.
- Invited by the Director of Power & Energy Initiative at the University of Pittsburgh to be an Instructor for a graduate course on Smart Grid Technologies & Applications. Subject: Substation Automation and Protective Relaying; on-going.
- Participated in U.S./Canada Power Outage Task Force led by the Department of Energy (DOE), Natural Resources Canada, and the North American Electric Reliability Council (NERC) created to study the blackout of August 14, 2003, the largest electrical outage event in U.S. history.
- Led comprehensive Root Cause Analysis (RCA) for PJM executive management in response to a July 1999 low voltage condition stemming from record peak loading conditions on the bulk transmission system. Proactive corrective measures prevented future occurrences.

Renewables Integration and Impact on Transmission & Distribution Systems

- Invited by Prime Minister of Curacao to represent USA in 1st Annual Durable Energy Conference in Curacao to address renewables integration issues for the transmission and distribution system; March 2012.
- Invited by CEOs of Wind-2-Power-Systems (W2PS) and Hudson Energy to represent USA for conference in Madrid to cover PV integration, grid integration, energy storage, and DC infrastructure issues; February 2012.
- Invited by CARILEC to chair two sessions on Transforming the Electricity Grid at the Renewable Energy Forum, St Thomas, U.S. Virgin Islands; September 2011. CARILEC represents CEOs, COOs, and CFOs for 33 island utilities in the Caribbean.

Transmission & Distribution Planning

- Led distribution grid modernization planning efforts, focused on systematic and incremental addition of smart grid devices, with technology, performance, and cost central to the planning process
- Led EPC and turnkey solutions for electric distribution automation, medium voltage modular substations (distribution centers), and wind farm distribution systems (from base of turbine towers through interconnection to utility grid). Accountable for success of these focused areas when measured against sales and margin goals, internal and

external budget constraints, and overall customer satisfaction. Routinely augmented internal direct staff with external resources according to project needs. Matrix managed project teams to effectively utilize project resources.

- Co-founder of industry-wide consortium focused on strategic, business, regulatory, and technical issues associated with Conservation Voltage Reduction/Regulation (CVR) at investor-owned utilities, electric cooperatives, and municipals.
- Managed commissioning and public relations for comprehensive distribution line installation in the city of Smolensk, Russia. Project was collaborative effort between U.S. Trade & Development Agency (TDA) and Cooper Power Systems (CPS); 2002-2004.
- Developed distributed CVR measures to conserve energy and reduce overall losses without compromising end-user reliability or power quality.
- Developed emergency generation integration strategies for major industrial complexes in the USA.
- Conducted comprehensive seminar on electric power systems for the Ministry of Water and Power in Peking, China; 1984.
- Performed international power systems studies on power flow, transient stability, shunt compensation, load shedding, motor starting, loss formula development, short circuit, and protective device coordination; 1974-2000. Interfaced with Engineering Planning Managers.
- Led projects sponsored by the Pacific Power Association (PPA) for power system energy analysis and loss reduction on 20 islands in the South Pacific, 10 with U.S.-style power systems, and 10 with European-style power systems. Interfaced directly with CEOs and PPA throughout study.
- Taught Westinghouse Advanced School on Power System Stability; 1980-1988.

Professional Development Activities

NERC Compliance; IEC 61850; DMVP (DMEDI) Process Improvement; Professional Development Seminars on Management (Management Grid, Management Techniques, Team Building); Interpersonal Skills; Time Management; Managing the Software Project; Sales Techniques; SPIN Sales Training; Pricing Strategies; Finances; Technical Writing; Safety; Problem Solving & Decision Making; IEEE Seminars on Relay Coordination and Reactive Power Control; Root Cause Analysis; Reliability Analysis; Intellectual Property; Environmental Compliance; Corporate Ethics; Toastmasters International.

Company Affiliations

Willoughby Consulting, Raleigh, NC (2012 to Present)

Executive Consultant, Electric Power Systems Planning & Operation - Owner

Modular distribution substation application, specification, and implementation. Quantifiable Conservation Voltage Reduction (CVR) assessments for energy efficiency energy savings (kWh) and peak power reduction (kW); CVR application strategies. Emergency backup power supply needs assessment and solution strategies for large industrial/commercial facilities. Portfolio analysis, go-to-market strategies, and operations support related to electric power systems. Specific service areas include transmission and distribution planning, renewables integration strategies, energy efficiency measures, system protection strategies, distribution automation schemes, data management, and business plan development.

River Consulting Group (RCG), Clayton, GA (2018 to Present)

Executive Consultant - Contract

Advisory services related to distribution grid modernization planning efforts involving systematic and incremental addition of smart grid devices, with technology, performance, and cost central to process.

ABB, Inc. (ABB), Raleigh, NC (2016 to 2017)

Executive Consultant - Contract

Advisory services related to distribution grid modernization planning efforts involving systematic and incremental addition of smart grid devices, with technology, performance, and cost central to process.

Advanced Microgrid Solutions (AMS), San Francisco, CA (2015 to 2017)

Executive Consultant - Contract

Advisory services regarding business strategy, competitive intelligence, and energy services pricing strategies related to the company's business development efforts.

Applied Energy Group (AEG), New Brunswick, NJ (2012 to 2015)

Principal, Executive Consultant - Contract

Energy efficiency (savings) analysis methods, project procurement, and project execution. Innovative applications of existing technologies to advance the art. Industry-wide investigations. Direct responsibility for project teams, including subcontractors.

Dell Innovation Services, Peoria, IL (2012 to 2014)

Vice President, Electricity Transmission & Distribution - Contract

Design and apply substations (including modular) for emergency power supply. Develop electrical site one-line diagrams and associated loading profiles. Conduct power demand audits.

KEMA, Raleigh, NC (2006 to 2012)

Vice President, Electricity Transmission & Distribution

Strategic leadership of the U.S. technical T&D practice in North America, focusing on client issues related to electric power system T&D planning, asset management, protection and reliability, advanced technology applications, and future power systems. Direct responsibility for team of 30 professionals.

Cooper Power Systems, Franksville, WI (1989 to 2006)

Director, Industrial Development & Technical Services Marketing; Manager, Systems Integration Solutions; Director, Thomas A. Edison Technical Center; Manager, Systems Engineering Group

Technical solution development for electrical distribution automation, substations, distribution operating centers, and wind farm integration. Accountable for sales, margins, budget, and customer objectives. Directed project teams to matrix manage overall resources (which included marketing, sales, and engineering staffs) to promote services, identify

opportunities, and secure business. Participated in strategic alliances and acquisitions. Managed high power laboratory (500 MVA short circuit generator), high voltage laboratory (2 million volts), and full materials laboratory, with direct responsibility for a team of 110 professionals. Managed group responsible for Modular Integrated Transportable Substation (MITS) application, design, specifications, implementation, and support (69 kV and below) (10 MVA and below).

Westinghouse Advanced Systems Technology, Pittsburgh, PA (1974 to 1988)

Manager, Transmission Planning Section; Manager, T&D Software Services

Responsible for a staff of 8 involved in the application of technical transmission and distribution software, including marketing and customer service.

Black & Veatch Consulting Engineers, Kansas City, MO (1971 to 1974)

Coop student while with the University of Missouri - Rolla

Professional Memberships

- IEEE Life Senior Member
- IEEE Power Engineering Society Senior Member
- IEEE Industrial Applications Society Senior Member
- Phi Kappa Phi Member
- Eta Kappa Nu Member
- Tau Beta Pi Member
- Kappa Kappa Psi Member
- Wake County NC Precinct Election Official (2017-2019)

Professional Recognition

- 2016 Achieved Life Member status for the Institute of Electrical and Electronics Engineers (IEEE).
- 2012-14 Invited **Instructor** for **University of Pittsburgh** graduate course on *Smart Grid Technologies & Applications*. Subject: *Substation Automation and Protective Relaying*.
- 2013 Co-Founder of an industry-wide *CVR Consortium* focused on increasing energy savings by resolving strategic, business, and technical issues preventing more wide-spread deployment by electric utility companies.
- 2012 Earned **Order of the May** honors recognition from Carnegie-Mellon University for more than 10 years of continous and consistent support. Citation includes these words: "This special order honors those who embody all the best characteristics for which the society was originally founded in 1947."
- 2011 Invited Chairman, 2 Sessions, *Transforming the Electricity Grid*, Carilec Renewable Energy Forum, September 20-21, St. Thomas, U.S. Virgin Islands.

- 2003 Awarded *Honorary Professional Degree of Electrical Engineering*, Univ of MO-Rolla (UMR), based on "outstanding professional and personal achievements"
- 2003 Elected **President**, Academy of Electrical & Computer Engineers, UMR
- 2001 Elected VP, Academy of Electrical & Computer Engineers, University of Missouri-Rolla
- 2001 Co-Chair, Steering Committee to develop **Distribution Vision 2010 LLC (DV2010)**, consortium of Investor Owned Utility (IOU) companies
- 2001 Appointed **Chairman**, Technical Paper Committee, USA National Committee, **CIRED**
- 2000 Appointed to Industry Advisory Council, Rensselaer Polytechnic Institute (RPI), NY
- 1998 Appointed to *Industrial Liason Council (ILC)* for the College of Engineering and Applied Science, University of Wisconsin-Milwaukee
- 1997 Elected to **Academy of Electrical & Computer Engineers**, University of Missouri-Rolla for "outstanding contributions to the profession of electrical engineering and for leadership in the community and profession." Requires minimum 20 years experience to qualify.
- 1991 Selected for **USA Trade Mission** on Electric Power to East Germany. Represented USA distribution equipment technologies. [E & W Berlin concrete wall fell Nov 1989]
- 1989 Appointed to *Industry Advisory Council*, University of Missouri-Rolla (UMR).
- 1985 *Westinghouse Engineering Achievement Award* for "high level technical contribution to the development and implementation of profitable engineering courses in the Electric Utility and Industrial markets."
- 1985 *Senior Member* status for Institute of Electrical & Electronics Engineers (IEEE).
- 1984 Elected *Chairman* of the <u>only</u> **Quality Circle** in operation at Westinghouse Advanced Systems Technology (AST)
- 1982 Appointed to <u>first</u> *Engineering Advisory Council* for Westinghouse AST
- 1978 Earned **PROFESSIONAL ENGINEER (PE) License** from the Commonwealth of Pennsylvania
- 1972 Received *Outstanding Bandsman* award from Kappa Kappa Psi band fraternity
- 1969 Valedictorian and Student Council President, Grandview Senior High School

RDW Publications - Page 1 of 4

Updated: April 2020

Publications

Ronald Dean Willoughby, PE

Willoughby, Ronald D, Bob Grant, and George Fandos. "Unbiased 360-Degree DER Evaluations and Assistance," EnergyCentral - Utility Professionals Group, April 20, 2020.

Willoughby, Ronald D. "Why Do It?," *EnergyPulse* from Energy Central – Intelligent Utility, March 21, 2018.

Willoughby, R., S. K. Gill, E, Zhang, J. Silvers. "Distributed Energy Resources Supporting Power Grid Reliability," CIGRE US National Committee, 2016 Grid of the Future Symposium, November 2016.

Willoughby, Ronald D. "Grid Modernization is Like Remodeling a House," Energy Central - Electric Power Systems Planning & Operation, July 20, 2016.

Willoughby, Ronald D. "The Power of Incrementalism," *EnergyPulse* from Energy Central - Communications & Security, February 10, 2016.

Willoughby, Ronald D. "Aging Workforce Presents Knowledge Management Opportunities," *EnergyPulse* from Energy Central - Human Resources, November 13, 2015.

Willoughby, Ronald D. "SEPB CVR Proposal Response Review," Report for AEG for TVA on behalf of SEPB, PO 916082, June 8, 2015.

Willoughby, Ronald D. "Distribution Automation and Conservation Voltage Reduction," *EnergyPulse* from Energy Central - Grid Operations; April 17, 2015.

Willoughby, Ronald D. "CVR Fundamentals," White Paper, January 5, 2015.

Willoughby, Ronald D., et al. "Final Report - Voltage Optimization (VO) Feasibility Study," AEG for ComEd VO Study, Contract No. 01146430, January 6, 2015.

Willoughby, Ronald D. "Order of the 9's," *EnergyPulse* from Energy Central - Grid Operations, June 2, 2014.

Willoughby, Ronald D. "Analysis Paralysis," *EnergyPulse* from Energy Central - Business Corporate, January 16, 2014.

Willoughby, Ronald D. "CVR and the Lost Revenue Conundrum," *EnergyPulse* from Energy Central, August 9, 2013.

Willoughby, Ronald D. "Time to Take a Second Look at Conservation Voltage Regulation?" *Intelligent Utility Update*, June 4, 2013.

Willoughby, Ron, Kellogg Warner. "Voltage Management: A Hidden Energy Efficiency Resource," GTM Research *Energy Efficiency Newsletter*, May 7, 2013.

RDW Publications - Page 2 of 4

Updated: April 2020

Willoughby, Ron, Kellogg Warner. "Conservation Voltage Regulation: An Energy Efficiency Resource," IEEE *Smart Grid Newsletter*, April 10, 2013.

Willoughby, Ronald D. "Thinking Through Grid Modernization: It's a Chinese Puzzle – Moving Each Piece Moves Another," article written by Phil Carson of *Intelligent Utility Daily* after an exclusive interview with Mr. Willoughby, June 17, 2012.

Willoughby, Ronald D. "Power System Automation Drives Need for Data Acquisition," *Distributed Energy* Magazine, April 2012.

Willoughby, Ronald D. and Juan Gers. "IEC 61850 Primer," DNV KEMA TECH Notes, April 2012.

Willoughby, Ronald D. "Power System Automation Drives the Need for Smart Grid," DNV KEMA *Sherpa* Web Site, December 1, 2011.

Willoughby, Ronald D. "System Automation Drives Need for Data Acquisition," *Electric Light & Power* Magazine, November 2011.

Willoughby, Ronald D. "System Automation Drives Need for Data Acquisition," *PowerGrid International* Magazine, September 2011, pp 52-56.

Willoughby, Ronald D. "The 'Next Big Thing," article written by Phil Carson of *Intelligent Utility Daily* after an exclusive interview with Mr. Willoughby, April 21, 2010.

Willoughby, R. D., S. French Smith, S. Varadan. "A Knowledge Framework for Sustaining Business Growth and Success," Panel Session Submission 2010TD0574, IEEE T&D World Conference & Exposition, April 2010, New Orleans.

Willoughby, R. D. (Contributing Expert). *Utility of the Future*, Volume 2, *The Promise of Energy Storage*, KEMA, December 2009.

Willoughby, R. D. "The Evolving Convergence of Distribution Automation and Advanced Metering Infrastructure," KEMA Automation Insight, June 2007.

Willoughby, R. D. and L. A. Kojovic. "Integration of Distributed Generation In A Typical USA Distribution System," CIRED 2001, Amsterdam Netherlands, June 2001.

Willoughby, R. D. "Order of the 9's," Cooper Power Systems SETUP Newsletter, Summer 2000 Edition.

Willoughby, R. D., P. Avery, et al. "Economic Solutions To Power Quality and Reliability Problems," American Power Conference *Proceedings*, Chicago, IL, April 10-12, 2000.

Willoughby, R. D. and L. A. Kojovic. "Digital Models Simulate Physical Test Facilities," *IEEE Computer Applications in Power* Magazine, April 1995.

Willoughby, R. D., C. A. McCarthy, et al. "Power Quality and Reliability Services," Electric Power '99 Conference *Proceedings*, Baltimore MD, April 1999.

Willoughby, R. D., C. Gilker, and E. Strauss. "Education Highway for the Practicing Engineer: What Next in the Age of Deregulation?" Systems Engineering Group Bulletin SE9901, February 1999.

RDW Publications - Page 3 of 4

Updated: April 2020

Willoughby, R. D. and S. R. Mendis. "Harmonic Filters Provide The Key To Plant Reliability," PPE Magazine, April 1996.

Willoughby, R. D. and L. A. Kojovic. "Computer Methods for Simulations of Power Lab Tests & Electrical Apparatus Operations in Power Systems," TESLA II Millennium, Belgrade, Yugoslavia, October 1996.

Willoughby, R. D., C. Gilker, et al. "Training for TODAY'S Practicing Electrical Distribution Engineer," Systems Engineering Group Bulletin SE9402, Cooper Power Systems, August 1994.

Willoughby, R. D. and K. Argiropoulos. "Hybrid Surge Arrester Technology," US Technology for the Production, Transmission, & Distribution of Electric Power Seminar, Berlin, Germany, October 1991.

Willoughby, R. D. and K. Argiropoulos. "Overcurrent Protection Devices for Overhead Distribution Systems," US Technology for the Production, Transmission, & Distribution of Electric Power Seminar, Berlin, Germany, October 1991.

Willoughby, R. D. and K. Argiropoulos. "Voltage Regulation Equipment for Overhead Distribution Systems," US Technology for the Production, Transmission, & Distribution of Electric Power Seminar, Berlin, Germany, October 1991.

Willoughby, R. D. and S. R. Mendis. "Power Quality Problems in Electric Power Systems," US Technology for the Production, Transmission, & Distribution of Electric Power Seminar, Berlin, Germany, October 1991.

Willoughby, R. D., et al. "Electrical Studies for an industrial Gas Turbine Co-Generation Facility," IEEE Industrial Applications Society (IAS) *Transactions*, July/August 1989.

Willoughby, R. D., R. W. Johnson, and R. A. Whiteside. "Computer-Aided Protective Device Coordination: Advantages," Congress on Protective Systsems for Electrical Installation, Puerto la Cruz, VZ, July 29-31, 1987.

Willoughby, R. D., et al. "A Key to Plant Reliability: System Studies," Pakistan Electrical Conference, February 1987.

Willoughby, R. D., and S. Rubino. "Power Systems Studies can P4redict and Resolve Harmonic Resonance Problems in Industrial Plants," IEEE Petroleum and Chemical (PCIC) *Conference Record*, September 1985.

Willoughby, R. D., J. A. Juves, and A. Batenburg. "Utility Survey of Methods for Minimizing the Number and Severity of System Separations," *Final Report*, Electric Power Research Institute, EPRI EL-3437, Project 1952-1, March 1984.

Willoughby, R. D. "Limitations on Local Shunt Compensation Studied with WESTCATTM," the Westinghouse *AST/Group News*, Pittsburgh, Pennsylvania, Winter 1983/84.

Willoughby, R. D. "New Program for Modelling Induction Motors," the Westinghouse *AST/Group News*, Pittsburgh, Pennsylvania, Summer 1983.

Willoughby, R. D. and J. A. Juves. "Computer Software for the Analysis of Industrial Power Systems," Westinghouse Industrial Applications *Workshop Proceedings*, Philadelphia, Pennsylvania, April 19-20, 1983.

RDW Publications - Page 4 of 4

Updated: April 2020

Willoughby, R. D., J. A. Juves and S. S. Waters. "A Streamlined Procedure fro Obtaining Regulatory Approval for New Transmission Lines," *Final Report*, Electric Power Research Institute, EPRI EL-1404, Contract TPS-733, December 1982.

Willoughby, R. D., R. W. Powell, and T. E. Szabo. "The Effects of Shunt Compensation on Local Generation Requirements," Fourth (4th) Conference on Electric Power Supply Industry *Proceedings*, Bangkok, Thailand, 1982.

Willoughby, R. D. and S. S. Waters. "Modeling Induction Motors for System Studies," IEEE Industrial Applications Society (IAS) *Transactions*, San Francisco, California, 1982.

Willoughby, R. D. and P. M. Myers. "Special Industrial System Studies to Insure Plant Reliability," IEEE Petroleum and Chemical (PCIC) *Conference Record*, St. Louis, Missouri, 1982.

Willoughby, R. D. and J. A. Juves. "Justification and Approval of New Electric Transmission Lines: A Procedure," *Workshop Proceedings*, Electric Power Research Institute, EPRI EL-2190, Contract WS 79-230, December 1981, Section 1.

Willoughby, R. D. and S. S. Waters. "Procedure for Conducting a Transient Stability Study," IEEE Midwest Power Symposium *Conference Record*, University of Illinois, October 1981.

Willoughby, R. D. and E. R. Taylor, Jr.. "Practical Application Limit for Shunt Compensation Before Generation Addition," Pennsylvania Electric Association (PEA) Biannual System Planning Committee Meeting *Record*, Hershey, Pennsylvania, September 1981.

Willoughby, R. D., R. S. Hahn, S. Dasgupta, and E. M. Baytch. "Maximum Frequency Decay Rate for Reactor Coolant Pump Motors," IEEE *Transactions* on Nuclear Science, Vol NS-26, No. 1, February 1979, pp. 863-870.

Willoughby, R. D. and R. W. Johnson. "Stability Study Commentary and Interpretation of Computer Printout for Sonatrach LNG Plant Electrical Power System," *Final Report*, Report No. AST-75-1000-08, Westinghouse Advanced Systems Technology, Pittsburgh, Pennsylvania, June 1975.

Willoughby, R. D. and J. W. Skooglund. "Transient Stability Study for Central Nuclear de Almaraz," *Final Report*, Report No. AST-75-1023, Westinghouse Advanced Systems Technology, Pittsburgh, Pennsylvania, May 1975.

Willoughby, R. D. and R. W. Johnson. "Load Flow Study Commentary and Interpretation of Computer Printout for Sonotrach LNG Plant Electrical Power System," *Final Report*, Report No. AST-75-1000-06, Westinghouse Advanced Systems Technology, Pittsburgh, Pennsylvania, April 1975.

Willoughby, R. D. and R. W. Johnson. "Protective Device Coordination Study Commentary and Interpretation of Computer Printout for Sonotrach LNG Plant Electrical Power System," *Final Report*, Report No. AST-75-1000-04, Westinghouse Advanced Systems Technology, Pittsburgh, Pennsylvania, March 1975.

Willoughby, R. D. and R. W. Johnson. "Short Circuit Study Commentary and Interpretation of Computer Printout for Sonotrach LNG Plant Electrical Power System," *Final Report*, Report No. AST-75-1000-02, Westinghouse Advanced Systems Technology, Pittsburgh, Pennsylvania, February 1975.

Joseph J. DeVirgilio, Jr. Owner, Suncoast Management Consultants, LLC

Education:

B.E./1973/Electrical Engineering/Stevens Institute of Technology, Hoboken, NJ

M.E./1981/ Electric Power Engineering/RPI, Troy, NY

Professional Experience:

2013 – Present	Sarasota Memorial Healthcare System: Board member, former Chairman					
2011 - Present	Suncoast Management Consultants, LLC: Owner					
2010	United Way of Dutchess County: CEO					
1973 - 2010	CH ENERGY GROUP, INC. CENTRAL HUDSON GAS & ELECTRIC CORPORATION CENTRAL HUDSON ENTERPRISES CORPORATION (CHEC) 284 South Avenue, Poughkeepsie, NY 12601					
1/05 -12/10	Executive Vice President - Corporate Services and Administration Senior Corporate Officer and member of the Executive Team of CH Energy Group, Inc. Director of Central Hudson Gas & Electric Corp ("Central Hudson") and Central Hudson Enterprises Corp ("CHEC")					
	Executive Responsibility for Griffith Energy Services, Inc., a wholly-owned fuel oil distribution subsidiary.					
	Executive responsible for establishing and executing corporate policy and objectives and associated implementation of the related processes for the following areas of responsibility for Central Hudson:					
	Information Technology; Corporate Communications, Media Relations, Governmental Affairs, and Economic Development; Human Resources Purchasing & Stores; Fleet Management; Office Services; Facility Operation & Maintenance; and Corporate Quality and Process Re- engineering.					
	Corporate Executive Committee membership: Chairperson: I/T Steering Committee. Member of the Capital Resource Allocation Committee.					
03/05 -12/10	Director, Central Hudson Gas & Electric Corp					

- 03/02 -12/10 Director and Executive Vice President CHEC, Griffith Energy Services and SCASCO
- 11/98 -12/24 Senior Vice President Corporate Services and Administration Corporate Executive Committee membership: Chairperson: I/T Steering Committee and the Retirement Income, 401K, and VEBA Plans Administrative Committees. Member of the Capital Resource Committee.
- 5/88 -11/98 Vice President -- Human Resources and Administration
- 4/86 5/88 Assistant Vice President Gas & Electric Customer Services & T&D Operation
- 3/84 4/86 Manager Corporate Services & I/T
- 3/82 3/84 Manager Gas & Electric Customer Services Field and Call Center Operation
- 3/79 3/82 District Superintendent Catskill Gas & Electric T&D Operation
- 6/73 3/79 Engineering Assignments Gas and Electric Field Engineering, Gas Meter Engineer, and Gas Testing facility supervisor

Professional Affiliations:

3/80 – 12/11	Professional Engineer, New York State, License No. 057637							
1994 - 2000	Marketing Executives Conference member 1994; Executive Committee 1995; Program Chairperson 1997.							
1993 -2004	Council of Industry of Southeastern New York Board of Directors.							
1988 -1999	New York State Regional Utility Group Central Hudson's Representative							
1982-1998	American Gas Association (AGA) Central Hudson Gas & Electric's Representative; Customer Services Committee (1982-1988); Human Resources Committee (1988 to 1998).							

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-1 Page 1 of 1

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 2021 Least Cost Integrated Resource Plan

Department of Energy Technical Session Data Requests - Set 1

Date Request Received: 4/27/22	Date of Response: 5/11/22
Request No. DOE TS 1-3	Respondent: Carmen Liron-Espana

<u>REQUEST</u>:

Reference Liberty LCIRP January 14, 2021 at Bates 017. Please update the paragraph beginning on line 6 to reflect the differences (or a revised definition) to indicate whether the 2020 value provided (188.5 MW) is an actual value or a weather adjusted value and whether the 2037 forecast value (217.34 MW) is a1-in-10 weather scenario.

RESPONSE:

The 2020 value provided of 188.5 MW is a weather adjusted value. Please see Table 1 at Bates 128.

For consistency, the Company would like to revise the paragraphs starting on line 2 and line 6 at Bates 017 as follows:

(On line 2): The forecast model projects, under normal weather conditions, an increase in Liberty's summer peak demand from 192.459 megawatts ("MW") in 2021 to 202.6 MW in 2037. This results in an average annual increase of 0.3% prior to any "out of model adjustments" for new load greater than 300 kW.

(On line 6): The Company developed an "extreme weather" forecast of summer peak demands based on a 1-in-10 weather scenario. The extreme weather forecast model projects an increase from 206.994 MW in 2021 to 217.34 MW in 2037. This results in an average annual increase of 0.3%.

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 1 of 8

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 Least Cost Integrated Resource Plan

Staff Data Requests - Set 1

Date Request Received: 4/1/21	Date of Response: 4/15/21
Request No. Staff 1-37	Respondent: Carmen Liron-Espana
-	Joel Rivera

REQUEST:

Reference Liberty LCIRP, at Bates 14, stating "The extreme weather scenario takes the weather conditions associated with the highest peak day over a 20-year history and applies these extreme conditions to all future years of the forecast. Based on the historical experience, there is only a ten percent probability that actual peak-producing weather will be equal to or more extreme than the extreme weather scenario. That is, the extreme weather forecast is a "1 in 10" case."

- In the earlier LCIRP submittal, DE 19-120, Attachment 2, Bates 162, Section 8.1 states a. "As shown in Figure 1 above, the planning process for designing the Distribution System begins with the load forecast. The PSA load forecast is updated annually. The load forecast at the system level is based on econometric models, and is developed on both a weather-normalized and weather-probabilistic basis. Currently, the Liberty distribution system is modeled for a "peak hour" load level that has a 5% probability of occurrence such that those weather conditions are expected to occur once in 20 years. Specific major known or planned load additions are factored into the load forecast." An additional description of Forecasting Methodology and Application for Planning Criteria is described in DE 19-120, Liberty response to Staff Data Request 1-3, as follows "The econometric model is used to simulate the historical and forecasted peak demand for each PSA under normal and extreme weather conditions. The normal weather simulation assumes average weather conditions for each year of the forecast. Normal weather conditions are determined by averaging the weather for the highest peak day of a 20-year historical period. As an average of historical weather, the normal weather forecast becomes a "50/50" case with a 50% probability that actual weather is greater than or less than the forecasted conditions. The extreme weather scenario takes the weather conditions associated with the highest peak day over a 20-year history and applies these conditions to all future years of the forecast. Based on the historical experience, there is only a five percent probability that actual peak-producing weather will be equal to or more extreme than the extreme weather scenario. That is, the extreme weather forecast is a "1 in 20" case."
 - i. Please explain why the Company samples the peak days over 20 years and determines that it is a "1 in 10 forecast" or 90/10, rather than follow the methodology of obtaining peak forecasts over a 10 year period (1 in 10).

- ii. Please explain whether the Company has used the "historical experience" in the forecasting methodology before as it relates to timeframe in a probabilistic forecast methodology. If not, please explain why it has chosen to do so in this case.
- Why does the Company label the 1 in 10 year forecast an "extreme forecast" when, in previous years, the extreme forecast was reserved for a 95/5 or 1 in 20 year forecast?
- iv. Utilizing the similar methodology as the 95/5 in the previous 2019 LCIRP (DE 19-120) forecast, please provide the 90/10 or "1 in 10 year".
- v. Please provide all communications relating to the forecast submission in this LCIRP between the forecast consultant/vendor and Liberty or its representative

RESPONSE:

- a. See the responses below:
 - i. See Attachment Staff 1-37.a.i.xls for the Company's updated forecast which samples the peak days over 10 years rather than 20 years. Moving forward, Liberty could model its distribution system for a "peak hour" load level that has a 10% probability of occurrence such that those weather conditions are expected to occur once in 10 years. This change was made as part of Docket No. DE 16-383.
 - ii. The Company calculated its normal and extreme weather scenarios based on historical weather experience in our system territory in the last 20 years.
 - iii. See the Company's response to i.
 - iv. See the Company's response to i.
 - v. See the Company's response to Staff 1-30.a.

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 3 of 8

				Forecasted	Peaks Norr	nal Weat	he	r	
		Summer				Winter			
year		month		Peak Mw	Growth	month		Peak Mw	Growth
	2021		7	195.853	3.87%		1	149.116	6.66%
	2022		7	196.242	0.20%		1	149.169	0.04%
	2023		7	196.698	0.23%		1	149.325	0.10%
	2024		7	197.184	0.25%		1	149.517	0.13%
	2025		7	197.681	0.25%		1	149.733	0.14%
	2026		7	198.17	0.25%		1	149.948	0.14%
	2027		7	198.647	0.24%		1	150.149	0.13%
	2028		7	199.111	0.23%		1	150.339	0.13%
	2029		7	199.564	0.23%		1	150.515	0.12%
	2030		7	200.008	0.22%		1	150.682	0.11%
	2031		7	200.441	0.22%		1	150.841	0.11%
	2032		7	200.86	0.21%		1	150.987	0.10%
	2033		7	201.266	0.20%		1	151.116	0.09%
	2034		7	201.656	0.19%		1	151.235	0.08%
	2035		7	202.037	0.19%		1	151.337	0.07%
	2036		7	202.415	0.19%		1	151.435	0.06%
	2037		7	202.783	0.18%		1	151.529	0.06%

based on October 2010-September 2020 Average Weather

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 4 of 8

	Forecasted Peaks Normal Weather								
		Summer				Winter			
year		month		Peak Mw	Growth	month		Peak Mw	Growth
	2021		7	192.548	2.11%		1	148.685	6.35%
	2022		7	192.934	0.20%		1	148.738	0.04%
	2023		7	193.387	0.23%		1	148.894	0.10%
	2024		7	193.871	0.25%		1	149.087	0.13%
	2025		7	194.365	0.25%		1	149.302	0.14%
	2026		7	194.851	0.25%		1	149.517	0.14%
	2027		7	195.326	0.24%		1	149.718	0.13%
	2028		7	195.787	0.24%		1	149.908	0.13%
	2029		7	196.237	0.23%		1	150.084	0.12%
	2030		7	196.679	0.23%		1	150.252	0.11%
	2031		7	197.11	0.22%		1	150.41	0.11%
	2032		7	197.526	0.21%		1	150.556	0.10%
	2033		7	197.929	0.20%		1	150.685	0.09%
	2034		7	198.317	0.20%		1	150.805	0.08%
	2035		7	198.695	0.19%		1	150.906	0.07%
	2036		7	199.071	0.19%		1	151.004	0.06%
	2037		7	199.435	0.18%		1	151.099	0.06%

based on October 2000-September 2020 Average Weather

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 5 of 8

	Forecasted Peaks Extreme Weather								
		Summer				Winter			
year		month	F	Peak Mw	Growth	month		Peak Mw	Growth
	2021		7	211.995			1	152.254	
	2022		7	212.397	0.19%		1	152.307	0.03%
	2023		7	212.865	0.22%		1	152.463	0.10%
	2024		7	213.364	0.23%		1	152.656	0.13%
	2025		7	213.874	0.24%		1	152.871	0.14%
	2026		7	214.376	0.23%		1	153.086	0.14%
	2027		7	214.866	0.23%		1	153.287	0.13%
	2028		7	215.343	0.22%		1	153.477	0.12%
	2029		7	215.809	0.22%		1	153.653	0.11%
	2030		7	216.265	0.21%		1	153.821	0.11%
	2031		7	216.712	0.21%		1	153.979	0.10%
	2032		7	217.143	0.20%		1	154.125	0.09%
	2033		7	217.562	0.19%		1	154.254	0.08%
	2034		7	217.966	0.19%		1	154.374	0.08%
	2035		7	218.359	0.18%		1	154.475	0.07%
	2036		7	218.75	0.18%		1	154.573	0.06%
	2037		7	219.131	0.17%		1	154.668	0.06%

based on peak weather conditions over the past 10 years

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 6 of 8

	Forecasted Peaks Extreme Weather								
		Summer				Winter			
year		month	F	Peak Mw	Growth	month		Peak Mw	Growth
	2021		7	207.083			1	151.821	
	2022		7	207.481	0.19%		1	151.874	0.03%
	2023		7	207.946	0.22%		1	152.029	0.10%
	2024		7	208.441	0.24%		1	152.222	0.13%
	2025		7	208.947	0.24%		1	152.437	0.14%
	2026		7	209.445	0.24%		1	152.653	0.14%
	2027		7	209.931	0.23%		1	152.853	0.13%
	2028		7	210.404	0.23%		1	153.044	0.12%
	2029		7	210.865	0.22%		1	153.22	0.11%
	2030		7	211.318	0.21%		1	153.387	0.11%
	2031		7	211.761	0.21%		1	153.545	0.10%
	2032		7	212.188	0.20%		1	153.691	0.10%
	2033		7	212.603	0.20%		1	153.821	0.08%
	2034		7	213.003	0.19%		1	153.94	0.08%
	2035		7	213.393	0.18%		1	154.041	0.07%
	2036		7	213.78	0.18%		1	154.14	0.06%
	2037		7	214.156	0.18%		1	154.234	0.06%

based on the average of the 2 peak weather conditions over the past 20 years

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 7 of 8

	Weather Values Used in Forecast							
Month	Normal	Extreme	Normal	Extreme				
	WTHI	WTHI	HDD	HDD				
January	27.3775	21.9	37.99	46.1				
February	34.4825	26.995	29.65	37.6				
March	39.3305	30.86	22.57	32.6				
April	57.135	74.86	7.33	25.1				
May	76.588	80.485	0	0				
June	80.0975	82.75	0	0				
July	82.6875	86.475	0	0				
August	80.683	84.61	0	0				
September	78.768	81.655	0	0				
October	70.5465	73.96	0	0				
November	43.767	36.29	17.21	26.4				
December	34.989	21.37	29.06	46.4				

based on October 2010-September 2020 Weather

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-2 Page 8 of 8

	Weather V	alues Used i	in Forecast	
Month	Normal	Extreme	Normal	Extreme
	WTHI	WTHI	HDD	HDD
January	30.0403	22.1275	35.085	45.55
February	34.3413	27.9425	29.605	37.85
March	39.6418	31.185	22.395	32.3
April	61.4713	77.35	5.7	20.9
May	75.941	81.205	0	0
June	80.2715	84.5175	0	0
July	81.912	85.3225	0	0
August	80.98	84.565	0	0
September	77.978	82.0725	0	0
October	67.549	74.4975	1.305	10
November	47.1588	37.4675	13.435	25.75
December	37.221	26	26.18	41

based on October 2000-September 2020 Weather

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-3 Page 1 of 1

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 2021 Least Cost Integrated Resource Plan

Department of Energy Data Requests - Set 8

Date Request Received:	7/8/22
Request No. DOE 8-4	

Date of Response: 7/22/22 Respondent: Heather Tebbetts

REQUEST:

Reference Liberty DOE 7-13. Please provide summary documentation of the Tesla Powerwall pilot project including budget, technical specifications, application procedure, ownership, customer contract terms including cost of maintenance, salvage/removal at end-of-life, service arrangements including potential impact to customers for instances of extended system/component outages, and operating experience. What alternatives were considered for the project?

RESPONSE:

Please see Docket No. DE 17-189 Petition to Approve Battery Storage Pilot Program on the Public Utilities Commission's website for all information requested on the battery storage pilot. https://www.puc.nh.gov/Regulatory/Docketbk/2017/17-189.html

The pilot project objectives were to reduce peak load, provide backup power to customers participating, and learn more about customer behavior through time-of-use rates. Consideration of alternatives was not part of the pilot objectives.

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-4 Page 1 of 5

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 Least Cost Integrated Resource Plan

Staff Data Requests - Set 1

Date Request Received: 4/1/21
Request No. Staff 1-12

Date of Response: 4/15/21 Respondent: Heather Tebbetts Melissa Samenfeld

REQUEST:

Reference Liberty LCIRP, at Bates 9, stating "The Company develops solutions to the deficiencies in the form of individual project proposals, which are then included in the Company's five-year capital budget based on their priority level and cost considerations."

a. Please provide the aforementioned five year capital budget, and each individual project proposal.

RESPONSE:

a. Please see Attachment Staff 1-12.xlsx.

DE 21-004 Exhibit 6

Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-4 Page 2 of 5

Project Description	Priority	FY2022	FY2023	FY2024	FY2025	FY2026	2022 - 2026 Filter
GSE-Dist-Land/Land Rights Blanket	2. Mandated	2,000	2,060	2,060	2,122	2,122	10,364
GSE-Dist-Telecomm Blanket	2. Mandated	2,500	2,575	2,575	2,652	2,652	12,955
GSE-Dist-Meter Blanket	2. Mandated	5,000	5,150	5,150	5,305	5,305	25,909
Dist-Transf/Capac Install Blanket	2. Mandated	5,000	5,150	5,150	5,305	5,305	25,909
Security Conversion GSE	2. Mandated	25,000	25,000		25,000	25,000	100,000
01737 GSE-Dist-Subs Blanket	2. Mandated	25,750	26,523	26,523	27,318	27,318	133,431
Distribution Feeder Power Factor Correction	2. Mandated	25,000	50,000	50,000	50,000	50,000	225,000
NN D-Line Work Found by Insp.	2. Mandated	50,000	50,000	50,000	50,000	50,000	250,000
GSE Distributed Generation Blanket	2. Mandated	50,000	50,000	50,000	50,000	50,000	250,000
GSE-Dist-Water Heater Blanket	2. Mandated	-	82,400	82,400	82,400	82,400	329,600
Lebanon Area Low Voltage Mitigation	2. Mandated	175,000	100,000	150,000	100,000	100,000	625,000
GSE-Dist-Load Relief Blanket	2. Mandated	100,000	103,000	103,000	106,090	109,273	521,363
GSE-Dist-St Light Blanket	2. Mandated	125,000	125,000	125,000	128,750	132,613	636,363
GSE-Dist-3rd Party Attach Blanket	2. Mandated	128,750	132,613	132,613	136,591	140,689	671,254
01659 Granite St Meter Purchases	2. Mandated	257,500	265,225	265,225	273,182	281,377	1,342,509
01663 GS Storm Program Proj	2. Mandated	300,000	300,000	300,000	309,000	318,270	1,527,270
GSE-Dist-Asset Replace Blanket	2. Mandated	412,000	424,360	424,360	437,091	450,204	2,148,014
01660 Granite St Transformer Purchases	2. Mandated	432,600	445,578	445,578	458,945	472,714	2,255,415
GSE-Dist-Public Require Blanket	2. Mandated	535,600	551,668	551,668	568,218	585,265	2,792,419
GSE-Dist-Reliability Blanket	2. Mandated	655,636	675,305	675,305	695,564	716,431	3,418,243
Dist-Damage&Failure Blanket	2. Mandated	1,000,000	1,000,000	1,000,000	1,125,509	1,159,274	5,284,783
GSE-Dist-New Bus-Resid Blanket	3. Growth	1,969,640	2,028,730	2,028,730	2,089,592	2,152,279	10,268,970
GSE-Dist-New Bus-Comm Blanket	3. Growth	1,575,712	1,622,984	1,622,984	1,671,673	1,721,823	8,215,176
Golden Rock Substation	3. Growth	-	-	-	50,000	-	50,000
Rockingham Substation	3. Growth	600,000	-				600,000
Rockingham Substation Transmission Supply	3. Growth	6,000,000					6,000,000
Rockingham Distribution Feeders	3. Growth	800,000					800,000
Install 39L4 Feeder Position Slayton Hill	3. Growth			75,000	450,000	-	525,000
Install 39L4 Distribution Slayton Hill	3. Growth			25,000	290,000	-	315,000
IE - NN Recloser Installations	3. Growth	50,000	50,000	50,000	50,000	50,000	250,000
Install 13L2-9L3 Feeder Tie	3. Growth	-	-				-
Reserve for New Business Residential	3. Growth	-	159,135	159,135	159,135	159,135	636,540
DE 21-004 Exhibit 6

Docket No. DE 21-004

Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-4

Reserve for New Business Commercial Unident specific & SC	3. Growth	-	159,135	159,135	159,135	159,135	Page 3 of 5 636,540
Install Vilas Bridge 12L1-12L2 Feeder Tie	5. Discretionary	-	-	-			-
Reserve for Substation Load Relief Specifics	5. Discretionary	-	-	-	-	-	-
NN ERR/Pockets of Poor Perf	5. Discretionary	225,000	550,000	-	-	-	775,000
Install Lebanon 1L2 Feeder Tie - Plainfield	5. Discretionary	-	-	10,000	1,400,000	-	1,410,000
NH ARP Relay & related	5. Discretionary	20,000	20,000	20,000	20,000	20,000	100,000
Pelham-New 14L5 Fdr Distribution Line	5. Discretionary	-	-	25,000	700,000	-	725,000
NH ARP Batts/Chargers Repl Prog	5. Discretionary	25,750	26,523	50,000	50,000	50,000	202,273
23kV Cable Inspection and Replacement Program	5. Discretionary	-	50,000	50,000	50,000	50,000	200,000
IT Systems Allocations - Corporate	5. Discretionary	50,000	50,000	50,000	50,000	50,000	250,000
Reserve for Sub Asset Repl Specifics	5. Discretionary	-	51,500	51,500	51,500	51,500	206,000
GSE-Dist-Genl Equip Blanket	5. Discretionary	50,000	51,500	51,500	53,045	54,636	260,681
Pelham-New 14L5 Fdr Breaker Position	5. Discretionary	-	-	75,000	700,000	-	775,000
IE-NN Dist Transformer upgrades	5. Discretionary	76,500	76,500	76,500	76,500	76,500	382,500
Reserve for Unidenfified Discretionary Projects	5. Discretionary	50,000	100,000	100,000	100,000	100,000	450,000
SCADA Data center upgrades	5. Discretionary	100,000	100,000	100,000	-	-	300,000
Amerductor replacement program	5. Discretionary	100,000	100,000	100,000	100,000	100,000	500,000
PS&I Activity - New Hampshire	5. Discretionary	100,000	100,000	100,000	100,000	100,000	500,000
Substation Security	5. Discretionary		100,000	100,000	100,000	250,000	550,000
Remove 1303 Line - Wilder Junction to Sachem Jct.	5. Discretionary	-		100,000	-	-	100,000
Reserve for Reliability Unidentified Specifics	5. Discretionary	-	103,000	103,000	103,000	103,000	412,000
Reserve for Load Relief Unidentified Specifics	5. Discretionary	-	106,090	106,090	106,090	106,090	424,360
Reserve for Public Requirements Unidentified Specifics	5. Discretionary	-	106,090	106,090	106,090	106,090	424,360
Reserve for Damage/Failure Unidentified Specifics &	5. Discretionary	103,000	106,090	106,090	106,090	106,090	527,360
IT Systems & Equipment Blanket	5. Discretionary	125,000	125,000	125,000	128,750	132,613	636,363
IE-NN UG Structures and Equipment	5. Discretionary	50,000	50,000	150,000	150,000	150,000	550,000
Air Break Switch Upgrade Program	5. Discretionary	150,000	150,000	150,000	150,000	150,000	750,000
Animal Guarding	5. Discretionary		150,000	150,000	150,000	250,000	700,000
Aging Equipment	5. Discretionary		250,000	150,000	150,000	1,000,000	1,550,000
Regulator Repl- NE North NH	5. Discretionary			150,000	150,000	150,000	450,000
Install Lebanon 1L2-1L3 Feeder Tie	5. Discretionary	-		200,000	-	-	200,000
SCADA and Distribution Automation	5. Discretionary	360,000	320,000	220,000	200,000	200,000	1,300,000
Underperforming Feeder Program	5. Discretionary	103,000	225,000	250,000	195,000	195,000	968,000
Feeder Getaway Cable Replacement	5. Discretionary		250,000	375,000	250,000	250,000	1,125,000

DE 21-004

Exhibit 6

Docket No. DE 21-004

Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-4

01757 NN ARP Breakers & Beclosers	5 Discretionary	100 000	375 000	375 000	375 000	375 000	Page 4 of 5 1 600 000
Enhanced Bare Conductor Replacement	5. Discretionary	750,000	590,000	790,000	375,000	375,000	2 880 000
Bare Conductor Replacement Program	5. Discretionary	750,000	1 215 000	1 130 000	1 021 023	1 000 000	5 116 023
Dale Conductor Replacement Program	5. Discretionary	750,000	1,213,000	1,130,000	1,021,025	1,000,000	1 400 000
	5. Discretionary	-	-	1,400,000			1,400,000
IE-NN URD Cable Replacement	5. Discretionary	1,200,000	1,350,000	1,500,000	550,000	1,500,000	6,100,000
Grid Modernization Program	5. Discretionary	287,523	1,569,851	2,619,851	2,619,851	1,041,928	8,139,004
AMI Placeholder - GSE	5. Discretionary		3,175,286	3,167,603	3,167,603	-	9,510,493
GIS & OMS Electric Upgrade	5. Discretionary	1,278,804	-				1,278,804
Rebuild Lockhaven Rd Enfield Phase 1	5. Discretionary		-				-
Barron Ave#10 Retirement	5. Discretionary	50,000	50,000				100,000
NEN-NH Electric Fence FY10	5. Discretionary		50,000				50,000
Salem Depot#9 Retirement	5. Discretionary	-	100,000				100,000
GSE Facilities Capital Improvements	5. Discretionary	130,000	178,714			130,000	438,714
Purchase and Rennovate New Building - Walpole	5. Discretionary	500,000	515,000				1,015,000
Transportation Fleet & Equip. Blanket	5. Discretionary	100,000	550,000		-	-	650,000
16L1 - 6L3 Goodfellow Rd	5. Discretionary		1,200,000				1,200,000
SAP Placeholder - GSE	5. Discretionary	15,476,633					15,476,633
Rockingham 21L4 Feeder	5. Discretionary				550,000	-	550,000
		37,618,899	22,677,732	22,949,814	23,713,118	17,232,029	124,191,592

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-4 Page 5 of 5

Row Labels	Sum	of 2022 - 2026 Filter
2. Mandated	\$	22,585,799.54
3. Growth	\$	28,297,226.83
5. Discretionary	\$	73,308,565.77
Grand Total	\$	124,191,592.14

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-5 Page 1 of 3

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 Least Cost Integrated Resource Plan

Staff Data Requests - Set 1

Date Request Received: 4/1/21
Request No. Staff 1-1

Date of Response: 4/15/21 Respondent: Joel Rivera

REQUEST:

Reference Grid Needs Assessment Supplemental Filing. Please provide a column in the assessment that includes the projected cost of each planned investment.

RESPONSE:

The table below includes the projected cost of each planned investment. The red text indicates information that was edited or added.

Facility/ Location (1)	System Granularity of Grid Need (1)	Capacity/ Reliability/ Resiliency (2)	Anticipated season or date by which distribution upgrade must be installed (3)	Equipment Rating (4)	Forecasted percentage deficiency above the existing facility/equipment rating 2025 (5)	Additional information:
	Reconductor bare					
14L2 Burns	conductors with 477					Project estimate
Rd, Pelham	Al. Spacer Cable	Reliability	2021	N/A	N/A	- \$1,000,000
7L1 Route 4, Enfield	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2022	N/A	N/A	Project estimate - \$750,000
14L1 Bridge St, Pelham	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2024	N/A	N/A	Project estimate - \$600,000
18L3 S Policy St, Salem	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2025	N/A	N/A	Project estimate - \$450,000
18L2 S Policy St, Salem	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2023	N/A	N/A	Project estimate - \$485,000
14L2 Marsh Rd, Pelham	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2023	N/A	N/A	Project estimate - \$430,000
1L3 Mascoma St, Lebanon	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2023	N/A	N/A	Project estimate - \$300,000
12L2 Watkins Hill Rd Phase 1, Walpole	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2022	N/A	N/A	Project estimate - \$860,000

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-5 Page 2 of 3

Facility/ Location (1)	System Granularity of Grid Need (1)	Capacity/ Reliability/ Resiliency (2)	Anticipated season or date by which distribution upgrade must be installed (3)	Equipment Rating (4)	Forecasted percentage deficiency above the existing facility/equipment rating 2025 (5)	Additional information:
12L2						
Watkins Hill Rd Phase 2, Walpole	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2023	N/A	N/A	Project estimate - \$590,000
Watkins Hill Rd Phase 3, Walpole	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2024	N/A	N/A	Project estimate - \$550,000
9L3 Range Rd - W Shore Rd, Windham	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2023	N/A	N/A	Project estimate - \$590,000
12L1 Rt. 123A, Alstead	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2024	N/A	N/A	Project estimate - \$790,000
39L2 Plainfield Rd Phase 1, Lebanon	Reconductor bare conductors with 1/0 Al. Spacer Cable	Reliability	2025	N/A	N/A	Project estimate - \$375,000
6L3 S Main St, Hanover	Reconductor bare conductors with 477 Al. Spacer Cable	Reliability	2024	N/A	N/A	Project estimate - \$530,000
1L2 Meriden Rd Phase 2, Plainfield	Reconductor bare conductors with 477 Al. Spacer Cable, create feeder tie and implement DA	Reliability	2025	N/A	N/A	Project estimate - \$1,400,000
16L1-6L3 Goodfellow Rd Tie, Hanover	Construct circuit tie 16L1 to 6L3 and implement DA	Reliability / Resiliency	2023	N/A	N/A	Project estimate - \$1,200,000
7L1-7L2 Lockehaven Rd Tie, Enfield	Construct circuit tie 7L1 to 7L2 and implement DA	Reliability / Resiliency	2024	N/A	N/A	Project estimate - \$1,400,000
21L4 New Feeder, Salem	Construct new 21L4 and implement DA	Reliability / Resiliency	2025	N/A	N/A	Project estimate - \$550,000
14L5 New Feeder, Salem	Construct new 14L5 and implement DA	Reliability / Resiliency	2025	N/A	N/A	Project estimate - \$1,300,000
12L1 Transformer, Walpole	Construct new 40L2 and circuit tie with 12L1 to mitigate contingency loss of 12L2 feeder	Reliability / Resiliency / Capacity	2025	9.6 MVA	133%	Project estimate - \$10,000,000 (investment grade)
12L1 Transformer, Walpole	Add 2nd Transformer and 115 kV T-Line at Michael Ave Station to mitigate contingency loss of Michael Ave Transf #1 (NGrid Owned)	Reliability / Resiliency / Capacity	2025	9.6 MVA	190%	Project estimate - \$10,000,000 (investment grade)
16L4 Feeder, Lebanon	Construct new 16L7 to supply new customer expansion.	Resiliency / Capacity	2021	11.7 MVA	116%	Project estimate - \$615,000

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-5 Page 3 of 3

Docket No. DE 21-004 Request No. Staff 1-1

Facility/ Location (1)	System Granularity of Grid Need (1)	Capacity/ Reliability/ Resiliency (2)	Anticipated season or date by which distribution upgrade must be installed (3)	Equipment Rating (4)	Forecasted percentage deficiency above the existing facility/equipment rating 2025 (5)	Additional information:
	Construct new 39L4					
1111 Foodor	to resolve					
IILI Feeder,	Iorecasteu overioau					
West	from new spot load	Resiliency				Project estimate
Lebanon	addition	/ Capacity	2025	10.9 MVA	105%	- \$740,000

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-6 Page 1 of 2

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 Least Cost Integrated Resource Plan

Staff Data Requests - Set 1

Date Request Received: 4/1/21	Date of Response: 4/15/21
Request No. Staff 1-25	Respondent: Joel Rivera
	Heather Tebbetts

<u>REQUEST</u>:

Reference Liberty LCIRP, at Bates 65, describing the Grid Needs Assessment as "exclude[ing] projects that are needed due to asset condition." Please explain how the Company interprets the requirement that the assessment "shall describe all forecasted grid needs related to distribution system capital investment of \$250,000 or more over a five-year planning horizon at the circuit level," as excluding planned projects needed due to "asset condition."

RESPONSE:

The Company interpreted grid needs related to distribution system capital investments as those listed in the LCIRP under section (2) at Bates 065, Lines 14 and 15, "Distribution service required: capacity, reliability, and resiliency." As such, the Company did not include projects needed due to asset condition. The Salem Area projects to be completed after 2021 were inadvertently left off the Grid Needs Assessment at Liberty LCIRP, Bates 065. These projects are needed for capacity, resiliency, and asset condition.

The Company provides the following list of additional projects, programs, or blankets that are needed due to asset condition.

Docket No. DE 21-004 Request No. Staff 1-25

Facility/ Location (1)	System Granularity of Grid Need (1)	Capacity/ Reliability/ Resiliency (2)	Anticipated season or date by which distribution upgrade must be installed (3)	Equipment Rating (4)	Forecasted percentage deficiency above the existing facility/equipment rating 2025 (5)
IE-NN URD Cable	Refer to DAS 014 - URD		Annual		
Replacement	UCD Cable Strategy	Asset	Program	N/A	N/A
GSE-Dist-Asset	Blanket Program - Asset		Annual		
Replace Blanket	Replacement Program	Asset	Program	N/A	N/A
Feeder Getaway					
Cable	Refer to DAS 013 - UG		Annual		
Replacement	Getaways Program	Asset	Program	N/A	N/A
01757 NN ARP					
Breakers &	Breaker Replacement	A	Annual		N1 / A
Reclosers	Program	Asset	Program	N/A	N/A
Amerductor	Defer to DAS 009 Small		Appual		
program	Wire Program	Accot	Program	N/A	N/A
program	whe riogram	Asset	FIOgrafii	N/A	N/A
De alvia alcana	Defente Colone Anos	Capacity /		Refer to	Defente Calena
ROCKINgnam	Refer to Salem Area	Resiliency	2021	Salem	Area Study
Substation	Study	/ Asset	2021	Area Study	Area Study
Substation		Canacity /		Refer to	
Transmission	Refer to Salem Area	Resiliency		Salem	Refer to Salem
Supply	Study	/ Asset	2021	Area Study	Area Study
Pockingham		Capacity /		Pofor to	
Distribution	Refer to Salem Area			Salem	Refer to Salem
Feeders	Study	/ Asset	2021	Area Study	Area Study
Coldon Bock 1012		, , , , , , , , , , , , , , , , , , , ,		Pofor to	
Distribution	Refer to Salem Area	Canacity /		Salem	Refer to Salem
Feeder	Study	Resiliency	2022	Area Study	Area Study
		Capacity /	2022	, a cu study	, ca 5taay
Damage Eailuro		capacity /			
Durnage Lanure	Blanket Program -	Resiliency	Δηριμαί		

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-7 Page 1 of 1

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 Least Cost Integrated Resource Plan

Staff Data Requests - Set 1

Date Request Received: 4/1/21	Date of Response: 4/15/21
Request No. Staff 1-21	Respondent: Heather Tebbetts
-	Melissa Samenfeld

REQUEST:

Reference Liberty LCIRP, Bates 57, Figure 4.7, Summarizing the Company's 5-Year Capital Investment Plan

- a. Please provide the Company's 5-Year Capital Investment Plan, including all supporting materials and business case justifications for the proposed discretionary projects.
- b. Please explain why the five year capital plan for this January 2021 LCIRP appears to address only projects filed in 2022-2026, and does not cover projects planned for 2021.

RESPONSE:

- a. Please see the Company's response to Staff 1-12 for the 5-Year Capital Investment Plan. The budget is preliminary and, as such, business cases and other related materials have not yet been created. The five-year investment plan is prepared to allow the Company to plan for upcoming capital outlays, and then the more detailed annual budget process is undertaken. Business cases are created after the annual budget is approved, usually in December of the prior year. For example, the 2022 capital budget is expected to be approved in December 2021. For projects such as those guiding the increased load for Tuscan Village, the Salem Area Study provides the information for future year investments such as the second 115 kV supply line, as the in service date is in 2022.
- b. The five-year capital plan does not include 2021 investments because the 2021 capital budget was approved in 2020. The Company considered that the last full LCIRP filing was made on January 15, 2016, and an order in that docket was received July 10, 2017, or 18 months after the filing. With a similar adjudicative proceeding here, the 2021 investments will likely be in service by the time this docket is completed, thus including it in the five-year capital plan would not be logical.

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-8 Page 1 of 4

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 2021 Least Cost Integrated Resource Plan

Department of Energy Technical Session Data Requests - Set 2

Date Request Received: 7/29/22	Date of Response: 8/12/22
Request No. DOE TS 2-1	Respondent: Heather Tebbetts

REQUEST:

Please provide an updated response to Request DOE 5-1 in this proceeding.

Request DOE 5-1 asked:

Please update CONFIDENTIAL_21-004_res_staff_2_6_att_c_i_liberty.xlsx for all current customer requests for service. For each customer listed, please include Liberty's assessment of the probability that each customer will take service at or near the projected load.

RESPONSE:

Please see Confidential Attachment DOE TS 2-1.1.xlsx for an update to Confidential Attachment DOE 5-1.xlsx. The Company has updated the revenues to reflect rates effective August 1, 2022. The Company is also including a map of the south parcel to show what has been completed, what is in construction, and what has plans pending per Tuscan Village in Confidential Attachment DOE TS 2-1.2.

Confidential Attachment DOE 5-1.xlsx included twenty-eight tabs calculating the revenues, and the update to that response now includes thirty tabs. Line 37 Central Village continues to be tab "Att 13." Tab "Att 29" is now Line 35 which breaks out Central Village building 1400 and the de-watering system from the original Central Village tab "Att 13." Tab "Att 30" is the new apartments on Line 36.

In Confidential Attachment DOE 5-1.xlsx, lines 35 through 37 were a high-level calculation of load for Tuscan. The Company has received better information recently and has made updates. These updates are found in lines 36 through 39. The breakdown to those lines encompasses the following items.

- Line 33
 - a. Building 2000 Hotel should be taking permanent power in the fall 2022
 - i. Waiting for transformer delivery

- Line 36
 - a. Building 4100 Added to plans with four floors of apartments
- Line 37
 - a. Building 1200 Increased to three floors @ 120,000 sq ft
 - b. Building 1300 New L shape bottom floor will have 35,000 sq ft grocery and five floors of apartments above

Confidential Attachment DOE TS 2-1.1.xlsx and Confidential Attachment DOE TS 2-1.2 contain "individual customer data ... that can identify, singly or in combination, that specific customer," RSA 363:37, I, and is thus protected from disclosure by RSA 363:38 and RSA 91-A:5, IV. Therefore, pursuant to Puc 203.08(d), the Company has a good faith basis to seek confidential treatment of this information and will submit a motion seeking confidential treatment prior to the final hearing in this docket. Note that a redacted version of Confidential Attachment DOE TS 2-1.2, the map of the south parcel of Tuscan Village, is not being provided as is not feasible to redact that document.

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-8 Page 3 of 4

		D		G-3		G-2
Customer Charge	\$	14.74	\$	17.03	\$	72.52
All kWh	\$ ().05857	\$ (0.05283	\$ (0.00234
kW						9.27
		G-1				
Customer Charge	\$	435.18				
On Peak kWh	\$ (0.00591				
Off Peak kWh	\$ (0.00175				
kW	\$	9.22				

8/1/2022 Rates

									Annual
			Anticipated			Load Data Info	Revenue		Distribution
Line	Phase	End Use	kW Demand	Tuscan	Current Status	Attachment #	Attachment	CIAC	Revenue
1	1		1216	North	Complete	1-3.b.14	14	\$0	\$133,011
2	1		340	North	Complete	1-3.b.1	1	\$0	\$53 <i>,</i> 472
3	1		96	North	Complete	1-3.b.17	17	\$0	\$12,735
4	1		667	North	Complete	1-3.b.21	21	\$111,814	\$80,466
5	1		87	North	Complete	1-3.b.16	16	\$0	\$8,478
6	1		80	North	Complete	1-3.b.16	16	\$0	see line 5
7	1	MB Retail 3	71	North	Complete, no tenant due to COVID	1-3.b.16	16	\$0	see line 5
8	1	MB Retail 4	56	North	Complete, no tenant due to COVID	1-3.b.16	16	\$0	see line 5
9	1		53	North	Complete	1-3.b.25	25	\$0	\$7,097
10	1		30	North	1 Tenant, 3 storefronts without tenants	1-3.b.21	21	\$0	\$1,520
11	1	Restaurant 1	87	North	2023/2024 redevelopment ongoing	N/A	n/a	N/A	N/A
12	1	Restaurant 2	127	North	2023/2024 redevelopment ongoing	N/A	n/a	NA	N/A
13	N/A		378	North	redevelopment ongoing	N/A	n/a	N/A	N/A
14	N/A		1547	North	redevelopment ongoing	1-3.b.28	28	TBD	\$185,858
15	1A		1661	South	Complete	1-3.b.18	18	\$21,020	\$219,921
16	1A		315	South	Complete	1-3.b.19	19	\$0	\$38,978
17	1A	Street Lights	10	South	Complete	1-3.b.26	26	\$13,460	\$2,487
18	1A	Street lights & well	16	South	Complete	1-3.b.27	27	\$7,710	\$4,340
19	1A	OMJ Buildings (Maintenance Buildings)	172	South	In progress, 2023	1-3.b.23	23	\$0	\$21,451
20	1A		74	South	Complete	1-3.b.24	24	\$3,963	\$9,684
21	1B		1233	South	Complete	1-3.b.22	22	\$35,866	\$155,119
22	1C		245	South	3 of 4 tenants moved in	1-3.b.2	2	\$34,391	\$36,478
23	1C		317	South	3 of 4 tenants moved in	1-3.b.3	3	\$0	\$45,861
24	1C	Building 300 (5.2)	109	South	Energized, signed tenant - move in end of 2022	1-3.b.4	4	\$8,035	\$13,950
25	1C		188	South	6 of 7 tenants moved in	1-3.b.5	5	\$27,124	\$23,412
26	1C		135	South	Complete	1-3.b.6	6	\$8,486	\$17,262
27	1C		44	South	Complete, plus level 2 EV charger	1-3.b.7	7	\$11,600	\$6,083
28	1C		386	South	Complete	1-3.b.8	8	\$9,302	\$53,938
29	1C		80	South	Complete	1-3.b.9	9	\$0	\$10,780
30	1C		73	South	Complete	1-3-b.10	10	\$0	\$14,240
31	1C		28	South	Complete	1-3.b-11	11	\$15,370	\$4,204
32	1C	Drive Custom Fit (Gym)	107	South	Complete	1-3.b-12	12	\$0	\$18,162
33	2	Hotel/Conf/Retail Building 2000	1800	South	In progress, 2022-2023	1-3.b.13	13 Hotel	\$0	\$244,547
34	2		937	South	In progress, 2022-2023	1-3.b.15	15	\$0	\$132,834
35	2A	Central Village Building 1400 & de-water (was within line 35)	2650	South	Redesign of Resi Village, Office Spaces, over 55+ & retail - 660,414 sf mixed use	Att 29	29	\$36,640	\$235,522
36	2B		2008	South	retail, residential and garage with solar	Att 30	30	\$0	\$92,023
37	2B	Central Village Building 1000-1500, 4000	4431	South	redesigned and densifying 2 buildings	Att 13	13 Central Village	TBD	\$357,558
38	2C	Drug Manufacturer/Office Park/Garage/Multi Tenant	4000	South	Redesign of Resi Village, Office Spaces, over 55+ & retail - 660,414 sf mixed use	1-3.b.20	20	TBD	\$736,486
39	2C	Parking garage moved to line 38	θ	South	Redesign of Resi Village, Office Spaces, over 55+ & retail - 660,414 sf mixed use	TBD	n/a	TBD	TBD
			Total					\$344,781	\$2,977,957

Total North	4,835		
Total South	21,019		
Total Tuscan Village	25,854		

Total Tuscan Village Completed	6,701
Total Tuscan Village In Progress/No Tenant	5,614
Total Tuscan Village not developed	13,539

000085

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-9 Page 1 of 1

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 2021 Least Cost Integrated Resource Plan

Department of Energy Data Requests - Set 5

Date Request Received: 1/28/22 Request No. DOE 5-3 Date of Response: 2/11/22 Respondent: Anthony Strabone

<u>REQUEST</u>:

Please Update Attachment Staff 3-1. a. to show the most recent available budget, estimated, and actual costs.

RESPONSE:

Please see attachment DOE 5-3.xlxs for the most recent budget, estimated, and actual costs. The Company is providing a summary comparing Staff 3-1.a to DOE 5-3 below.

Staff 3-1.a Total	\$ 39,014,827
DOE 5-3 Total	\$ 36,858,827
Difference	\$ 2,156,000

DE 21-004 Exhibit 6 Docket No. DE 21-004 Direct Testimony of Jay E. Dudley, Ronald D. Willoughby, and Joseph J. DeVirgilio Attachment JED/RDW/JJD-10 Page 1 of 1

Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty

DE 21-004 2021 Least Cost Integrated Resource Plan

Department of Energy Data Requests - Set 7

Date Request Received: 6/6/22 Request No. DOE 7-11 Date of Response: 6/20/22 Respondent: Michael Cooper

REQUEST:

Please identify the annual incremental changes in each reliability statistic expected from the proposed \$550,000 capital expenditure on the 12L2 circuit reconductoring solution.

RESPONSE:

In Appendix F, the proposed \$550,000 reconductoring project was only for Watkins Hill Phase 3, which is approximately 25% of the total project. With that, the annual incremental changes at that time with those costs, were an 8% reduction in frequency, a 4% reduction in duration, \$2,999 per change in customers interrupted, and \$23.50 per change in customer minutes interrupted.